电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

函数的奇偶性教学设计方案VIP免费

函数的奇偶性教学设计方案_第1页
1/4
函数的奇偶性教学设计方案_第2页
2/4
函数的奇偶性教学设计方案_第3页
3/4
教学设计方案模板所用教材:人教版必修一目次:第一章第三节第2课时教材分析本节内容属于函数领域的知识,是学生学过的函数概念的延续和拓展,又是后续研究其他具体函数的基础,是在高中数学起承上启下作用的核心知识之一.学情分析在此之前,学生已经学习了图形的轴对称和中心对称,以及函数的单调性,这为过渡到本节的学习起着铺垫作用教学目标1.能用三种语言刻画偶函数的概念,能初步判别偶函数2.经历观察、分析、猜想、验证、证明、概括等数学活动,培养用数学语言刻画事物的能力,领悟特殊到一般以及数形结合的思想方法3.感悟生活中的美,体会数学在生活中的运用价值教学重难点教学重点:奇偶函数概念的形成和初步运用教学难点:奇偶函数概念的理解教学方法教法:①发现法:通过情境引入、验证环节引导学生结合生活实际、几何图形概括奇偶函数的定义。②直观教学法:借助于几何直观进行探索。③讲授法:教师讲解奇偶函数定义,解析概念。学法:以问题为中心,以探索问题为主线展开,让学生观察分析、归纳概括、动手操作、推理论证等学习活动。教学手段多媒体:多媒体课件辅助教学,特别是利用动画演示,几何画板验证演示。教学过程教学环节教师行为学生行为设计说明环节一活动1引入对称观察剪纸图从生活入手,情景引入,欣赏图片教师给出剪纸图片,引导学生发现对称,感受对称问题组1.大家觉得美不美?2.从数学角度分析它们到底美在哪里?3.如何剪纸才能省时省力?4.什么是轴对称和中心对称?案,发现对称的美,并回忆初中所学过的两种对称让学生感受到数学美在生活中的体现,激发学生学习兴趣环节二回归旧知,感悟对称活动2感悟旧知教师带领学生从几何上的对称过渡到代数上的对称,并作出某点的对称点问题组1.在代数上,我们又是如何体现这种对称性的呢?2.回忆学过的函数,有没有也具有这种对称性的函数图像活动3画函数图教师让学生准确画出函数图像,引导学生发现函数图像的规律,问题组1.你们所说的两个函数,它们的图像是真的对称吗?2.如果是,我们应该如何验证?如何来刻画它的对称性呢?说出某一点相关对称点的坐标,并回忆学过的函数以及它们的图像,在坐标纸上画出,猜想出相应规律从点的对称自然过渡到函数图像的对称,学生动手操作,体验发现知识的快乐环节三提出猜想,形成概念活动4提出猜想教师引导学生发现规律,提出猜想问题组1.你能发现函数图像有什么特征?2.在画图过程中你发现有什么规学生将自己的猜想用数学语言描述出来,跟随教师一起验证它的正确性,自己小结几何画板清晰明了地验证出猜想的正确性,并继续用以代数法进一步证明,从特律?用数学语言如何描述?活动5验证猜想教师利用几何画板带领学生验证猜想,并证明猜想活动6形成概念教师引导学生运用从特殊到一般的数学转化思想,得出偶函数定义问题组1.你能否根据这个特殊的函数,从特殊到一般,给偶函数下个定义呢?出规律,给偶函数下定义殊到一般仿照具体的函数给偶函数下定义,突破难点,体现划归的思想环节四初步应用,理解加深活动7例题讲解教师组织学生解答例题,并纠正相应错误,巩固重要的知识问题组1.你是如何判断它是否为偶函数的?学生运用本节课所学知识,判断函数是否为偶函数,并说明理由进一步对知识的理解,突出本节课的重点环节五归纳小结,深化理解活动8归纳小结教师引导学生归纳本节知识以及本节课所运用的数学思想方法问题组1.本节课你学到了什么?2.运用到了哪些数学思想方法?反思性思考交流,总结本节课知识引导学生反思,提升学生对知识、思想方法、数学文化的认识。环节七布置作业,课后延伸活动9课后延伸教师抛出问题,让学生思考问题组1.函数图像关于原点对称,又有怎样的奥秘和性质呢?课后思考,想一想,使学生了解本节课与下节课的联系,课后思考相关问题设计理念上述设计按照提出猜想——验证猜想——证明猜想——形成概念—与思路—理解运用,整个设计体现以下理念:重过程——通过讲解、探究、观察、动手、推理等数学活动展现定义得出的来龙去脉,让学生经历猜想、验证、证明、理解等数学学习过程。重能力培养——让学生在参与过程中探究问题方法,理解从一般到特殊和数形结合的思想方法,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

函数的奇偶性教学设计方案

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部