电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理习题(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题VIP免费

高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理习题(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题_第1页
1/3
高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理习题(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题_第2页
2/3
高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理习题(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题_第3页
3/3
第二章推理与证明2.1合情推理与演绎推理2.1.2演绎推理A级基础巩固一、选择题1.若大前提是“任何实数的平方都大于0”,小前提是“a∈R”,结论是“a2>0”,那么这个演绎推理()A.大前提错误B.小前提错误C.推理形式错误D.没有错误解析:因为“任何实数的平方非负”,所以“任何实数的平方都大于0”是错误的,即大前提错误.答案:A2.在“△ABC中,E,F分别是边AB,AC的中点,则EF∥BC”的推理过程中,大前提是()A.三角形的中位线平行于第三边B.三角形的中位线等于第三边长的一半C.E,F为AB,AC的中点D.EF∥BC解析:大前提是“三角形的中位线平行于第三边”.答案:A3.下列四个推导过程符合演绎推理“三段论”形式且推理正确的是()A.大前提:无限不循环小数是无理数;小前提:π是无理数;结论:π是无限不循环小数B.大前提:无限不循环小数是无理数;小前提:π是无限不循环小数;结论:π是无理数C.大前提:π是无限不循环小数;小前提:无限不循环小数是无理数;结论:π是无理数D.大前提:π是无限不循环小数;小前提:π是无理数;结论:无限不循环小数是无理数解析:对于A,小前提与结论互换,错误;对于B,符合演绎推理过程且结论正确;对于C和D,均为大小前提及结论颠倒,不符合演绎推理“三段论”形式.答案:B4.下列四类函数中,具有性质“对任意的x>0,y>0,函数f(x)满足f(x+y)=f(x)·f(y)”的是()A.幂函数B.对数函数C.指数函数D.余弦函数解析:只有指数函数f(x)=ax(a>0,a≠1)满足条件.答案:C5.有这样一段演绎推理:“有些有理数是真分数,整数是有理数,则整数是真分数”结论显然是错误的,这是因为()A.大前提错误B.小前提错误C.推理形式错误D.非以上错误解析:用小前提“S是M”,判断得到结论“S是P”时,大前提“M是P”必须是所有的M,而不是部分,因此此推理不符合演绎推理规则.1答案:C二、填空题6.已知△ABC中,∠A=30°,∠B=60°,求证a0,那么方程有两相异实根.(大前提)一元二次方程x2-2mx+m-1=0的判别式Δ=(2m)2-4(m-1)=4m2-4m+4=(2m-1)2+3>0,(小前提)所以方程x2-2mx+m-1=0有两相异实根.(结论)10.设函数f(x)=sin(2x+φ)(-π<φ<0),y=f(x)的图象的一条对称轴是直线x=.(1)求φ;(2)求函数f(x)的单调增区间.解:(1) x=是函数y=f(x)的图象的对称轴,∴sin=±1.∴+φ=kπ+,k∈Z. -π<φ<0,∴φ=-.(2)由(1)知φ=-,因此y=sin.由题意,得2kπ-≤2x-≤2kπ+,k∈Z,∴kπ+≤x≤+kπ,k∈Z.故函数f(x)的增区间为,k∈Z.B级能力提升1.某人进行了如下的“三段论”:如果f′(x0)=0,则x=x0是函数f(x)的极值点,因为函数f(x)=x3在x=0处的导数值f′(0)=0,所以x=0是函数f(x)=x3的极值点.你认为以上推理的()A.大前提错误B.小前提错误C.推理形式错误D.结论正确2解析:若f′(x0),则x=x0不一定是函数f(x)的极值点,如f(x)=x3,f′(0)=0,但x=0不是极值点,故大前提错误.答案:A2....

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章 推理与证明 2.1 合情推理与演绎推理 2.1.2 演绎推理习题(含解析)新人教A版选修1-2-新人教A版高二选修1-2数学试题

您可能关注的文档

雨丝书吧+ 关注
实名认证
内容提供者

乐于和他人分享知识,从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部