2.5简单复合函数的求导法则(建议用时:45分钟)[学业达标]一、选择题1.若函数f(x)=3cos,则f′等于()A.-3B.3C.-6D.6【解析】f′(x)=-6sin,∴f′=-6sin=6sin=3.【答案】B2.函数y=xln(2x+5)的导数为()A.y′=ln(2x+5)-B.y′=ln(2x+5)+C.y′=2xln(2x+5)D.y′=【解析】y′=[xln(2x+5)]′=x′ln(2x+5)+x[ln(2x+5)]′=ln(2x+5)+x··(2x+5)′=ln(2x+5)+.【答案】B3.曲线y=f(x)=xex-1在点(1,1)处切线的斜率等于()A.2eB.eC.2D.1【解析】y′=ex-1+xex-1=(x+1)ex-1,故曲线在点(1,1)处的切线斜率为f′(1)=2.【答案】C4.函数y=cos2x+sin的导数为()A.y′=-2sin2x+B.y′=2sin2x+C.y′=-2sin2x+D.y′=2sin2x-【解析】y′=-sin2x·(2x)′+cos·()′=-2sin2x+·cos=-2sin2x+.【答案】A5.曲线y=e在点(4,e2)处的切线与坐标轴所围成的三角形的面积为()A.e2B.4e2C.2e2D.e2【解析】因为导函数y′=e,所以曲线在点(4,e2)处的切线的斜率为e2.于是切线方程为y-e2=e2(x-4).令x=0,解得y=-e2;令y=0,解得x=2.所以S=e2×2=e2.【答案】D二、填空题6.若f(x)=log3(x-1),则f′(2)=________.1【解析】f′(x)=[log3(x-1)]′=,∴f′(2)=.【答案】7.(2016·广州高二检测)若函数为y=sin4x-cos4x,则y′=________________.【解析】∵y=sin4x-cos4x=(sin2x+cos2x)·(sin2x-cos2x)=-cos2x,∴y′=(-cos2x)′=-(-sin2x)·(2x)′=2sin2x.【答案】2sin2x8.若曲线y=e-x上点P处的切线平行于直线2x+y+1=0,则点P的坐标是________.【解析】设P(x0,y0),∵y=e-x,∴y′=-e-x,∴点P处的切线斜率为k=-e-x0=-2,∴-x0=ln2,∴x0=-ln2,∴y0=eln2=2,∴点P的坐标为(-ln2,2).【答案】(-ln2,2)三、解答题9.已知函数f(x)=x(1-ax)2(a>0),且f′(2)=5,求实数a的值.【解】f′(x)=(1-ax)2+x[(1-ax)2]′=(1-ax)2+x[2(1-ax)(-a)]=(1-ax)2-2ax(1-ax).由f′(2)=(1-2a)2-4a(1-2a)=12a2-8a+1=5(a>0),解得a=1.10.求曲线f(x)=2sin2x在点P处的切线方程.【解】因为f′(x)=(2sin2x)′=2×2sinx×(sinx)′=2×2sinx×cosx=2sin2x,所以f′=2sin=.所以过点P的切线方程为y-=,即x-y+-=0.[能力提升]1.(2016·长沙高二检测)函数y=sin2x-cos2x的导数是()A.y′=2cosB.y′=cos2x-sin2xC.y′=sin2x+cos2xD.y′=2cos【解析】∵y′=(sin2x-cos2x)′=(sin2x)′-(cos2x)′=cos2x·(2x)′+sin2x·(2x)′=2cos2x+2sin2x=2=2cos,故选A.【答案】A2.(2016·潍坊高二期末检测)已知函数f(x)=x·lnax+b,曲线f(x)在点(e,f(e))处的切线方程为y=2,则ab=()2A.2+e2B.2+eC.D.【解析】f′(x)=lnax+1.由题意即解得a=,b=e+2,∴ab=,故应选C.【答案】C3.曲线y=f(x)=e-5x+2在点(0,3)处的切线方程为____________________.【解析】因为f′(x)=e-5x(-5x)′=-5e-5x,所以f′(0)=-5,故切线方程为y-3=-5(x-0),即5x+y-3=0.【答案】5x+y-3=04.曲线y=f(x)=e2x·cos3x在(0,1)处的切线与直线l的距离为,求直线l的方程.【解】∵f′(x)=(e2x)′·cos3x+e2x·(cos3x)′=2e2x·cos3x-3e2x·sin3x,∴f′(0)=2.∴经过点(0,1)的切线方程为y-1=2(x-0),即y=2x+1.设适合题意的直线方程为y=2x+b,根据题意,得=,∴b=6或-4.∴适合题意的直线方程为y=2x+6或y=2x-4.3