电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(江苏专用)高考数学二轮复习 解答题专项练6 数列 理-人教版高三全册数学试题VIP免费

(江苏专用)高考数学二轮复习 解答题专项练6 数列 理-人教版高三全册数学试题_第1页
1/7
(江苏专用)高考数学二轮复习 解答题专项练6 数列 理-人教版高三全册数学试题_第2页
2/7
(江苏专用)高考数学二轮复习 解答题专项练6 数列 理-人教版高三全册数学试题_第3页
3/7
6.数列1.已知从数列{an}中取出部分项,并按原来的顺序组成一个新的数列,,…,称为数列{an}的一个子数列,若该子数列为等比数列,则称为数列{an}的等比子数列.(1)设数列{an}是一个公差不为0的等差数列,若a1=1,a3=6,且a1,a3,,,,…,为数列{an}的等比子数列,求数列{nk}的通项公式;(2)是否存在一个等差数列{an},使得{bn}是数列{an}的一个等比子数列?其中数列{bn}的公比为q,同时满足b1=a,b2=a,b3=a(a10.由题意得a(a1+2d)2=(a1+d)4,化简得2a+4a1d+d2=0,所以d=(-2±)a1,而-2±<0,故a1<0.若d=(-2-)a1,则q===(+1)2,故b1=a=(1+)(1-q)=(1+)(-2-2)<0,故舍去.若d=(-2+)a1,则q===(-1)2,从而b1=a=(1+)(1-q)=(2-2)(1+)=2,所以a1=-,d=(-2+)a1=2-2,所以an=(2-2)n-3+2.又b1=2,令(2-2)n-3+2=2,故n=不是整数,即b1不是数列{an}中的项.1na2na3na1na2na3naknakna1na2na3naknakna1故不存在满足条件的等差数列{an}.2.设等比数列{an}的首项为a1=2,公比为q(q为正整数),且满足3a3是8a1与a5的等差中项;数列{bn}满足2n2-(t+bn)n+bn=0(t∈R,n∈N*).(1)求数列{an}的通项公式;(2)试确定t的值,使得数列{bn}为等差数列;(3)当{bn}为等差数列时,对每个正整数k,在ak与ak+1之间插入bk个2,得到一个新数列{cn}.设Tn是数列{cn}的前n项和,试求满足Tm=2cm+1的所有正整数m.解(1)由题意6a3=8a1+a5,则6q2=8+q4,解得q2=4或q2=2(舍),则q=2,又a1=2,所以an=2n.(2)当n=1时,2-(t+b1)+b1=0,得b1=2t-4,当n=2时,2×22-(t+b2)×2+b2=0,得b2=16-4t,当n=3时,2×32-(t+b3)×3+b3=0,得b3=12-2t,则由b1+b3=2b2,得t=3,而当t=3时,2n2-(3+bn)n+bn=0,得bn=2n,由bn+1-bn=2(常数)知,此时数列{bn}为等差数列,故t=3.(3)由(1)(2)知,an=2n,bk=2k.由题意知,c1=a1=2,c2=c3=2,c4=a2=4,c5=c6=c7=c8=2,c9=a3=8,…,则当m=1时,T1≠2c2,不合题意,当m=2时,T2=2c3,适合题意.当m≥3时,若cm+1=2,则Tm≠2cm+1,一定不适合题意,从而cm+1必是数列{an}中的某一项ak+1,则Tm=a1++a2++a3++a4+…+ak+,=(2+22+23+…+2k)+2(b1+b2+b3+…+bk)=2×(2k-1)+2×=2k+1+2k2+2k-2,2cm+1=2ak+1=2×2k+1,所以2k+1+2k2+2k-2=2×2k+1,即2k-k2-k+1=0,所以2k+1=k2+k.2k+1(k∈N*)为奇数,而k2+k=k(k+1)为偶数,所以上式无解.即当m≥3时,Tm≠2cm+1.综上知,满足题意的正整数仅有m=2.3.(2018·江苏省邗江中学期中)已知各项均为正数的数列满足a=2a+anan+1,且a2+a4=122b个222b个322b个22kb个22a3+4,其中n∈N*.(1)求数列的通项公式;(2)设数列{bn}满足bn=,是否存在正整数m,n(1

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(江苏专用)高考数学二轮复习 解答题专项练6 数列 理-人教版高三全册数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群