电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 两个基本原理的应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题VIP免费

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 两个基本原理的应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第1页
1/4
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 两个基本原理的应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第2页
2/4
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 两个基本原理的应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第3页
3/4
第一章1.1第2课时请同学们认真完成练案[2]A级基础巩固一、选择题1.已知函数y=ax2+bx+c,其中a、b、c∈{0,1,2,3,4},则不同的二次函数的个数共有(C)A.125个B.15个C.100个D.10个[解析]由题意可得a≠0,可分以下几类,第一类:b=0,c≠0,此时a有4种选择,c也有4种选择,共有4×4=16个不同的函数;第二类:c=0,b≠0,此时a有4种选择,b也有4种选择,共有4×4=16个不同的函数;第三类:b≠0,c≠0,此时a,b,c都各有4种选择,共有4×4×4=64个不同的函数;第四类:b=0,c=0,此时a有4种选择,共有4个不同的函数.由分类加法计数原理,可确定不同的二次函数共有N=16+16+64+4=100(个).故选C.2.体育老师把9个相同的足球放入编号为1,2,3的三个箱子中,要求每个箱子放球的个数不小于其编号,则不同的放球方法有(B)A.8种B.10种C.12种D.16种[解析]首先在三个箱子中放入个数与编号相同的球,这样剩下三个足球,这三个足球可以随意放置,第一种方法,可以在每一个箱子中放一个,有1种结果;第二种方法,可以把球分成两份,1和2,这两份在三个位置,有3×2=6种结果;第三种方法,可以把三个球都放到一个箱子中,有3种结果.综上可知共有1+6+3=10种结果.3.(2020·泉州二模)李雷和韩梅梅两人都计划在国庆节的7天假期中,到“东亚文化之都——泉州”“二日游”,若他们不同一天出现在泉州,则他们出游的不同方案共有(C)A.16种B.18种C.20种D.24种[解析]任意相邻两天组合一起,一共有6种情况,如①②,②③,③④,④⑤,⑤⑥,⑥⑦,若李雷选①②或⑥⑦,则韩梅梅有4种选择,选若李雷选②③或③④或④⑤或⑤⑥,则韩梅梅有3种选择,故他们不同一天出现在泉州,则他们出游的不同方案共有2×4+4×3=20,故选C.4.如图所示,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为(B)A.96B.84C.60D.48[解析]法一:分为两类.1第一类:当花坛A、C中花相同时有4×3×1×3=36种.第二类:当花坛A、C中花不同时有4×3×2×2=48种.共有36+48=84种,故选B.法二:分为四步.第一步:考虑A,有4种;第二步:考虑B,有3种;第三步:考虑C,有两类,一是A与C同,C的选法有1种,这样第四步D的选法有3种.二是A与C不同,C的选法是2种,此时第四步D的选法也是2种.共有4×3×(1×3+2×2)=84(种).5.如图,某电子器件是由三个电阻组成的回路,其中共有6个焊接点A、B、C、D、E、F,如果某个焊接点脱落,整个电路就会不通,现在电路不通了,那么焊接点脱落的可能性共有(C)A.6种B.36种C.63种D.64种[解析]每个焊接点都有正常与脱落两种情况,只要有一个脱落电路即不通,∴共有26-1=63种.故选C.6.如图所示给五个区域涂色,现有四种颜色可供选择.要求每一个区域只涂一种颜色,相邻区域所涂颜色不同,则不同涂色方法种数为(C)A.24种B.48种C.72种D.96种[解析]解法一:分两种情况:(1)A、C不同色,先涂A有4种,C有3种,E有2种,B、D有1种,由分步乘法计数原理知有4×3×2=24种.(2)A、C同色,先涂A有4种,E有3种,B、D各有2种,由分步乘法计数原理知有4×3×2×2=48种.由分类加法计数原理知,共有72种,故选C.解法二:先涂A,有4种涂法,再涂B、D,①若B与D同色,则B有3种,E有2种,C有2种,共有4×3×2×2=48种;②若B与D不同色,则B有3种,D有2种,E有1种,C有1种,共有4×3×2×1×1=24种,由分类加法计数原理知,共有不同涂法48+24=72种.二、填空题7.用数字2,3组成四位数,且数字2,3至少都出现一次,这样的四位数共有__14__个.(用数字作答)[解析]法一:数字2只出现一次的四位数有4个;数字2出现两次的四位数有6个;数字2出现三次的四位数有4个.故总共有4+6+4=14(个).法二:由数字2,3组成的四位数共有24=16个.其中没有数字2的四位数只有1个,没有2数字3的四位数也只有1个,故符合条件的四位数共有16-2=14(个).8.现有五种不同的颜色,要对图形中的四个部分进行着色,要求有公共边的两块不能用同一种颜色,不同的涂色方法有__180__种.[解析]依次给区域Ⅰ、Ⅱ、...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 两个基本原理的应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题

您可能关注的文档

慧源书店+ 关注
实名认证
内容提供者

从事历史教学,热爱教育,高度负责。

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部