高二数学(理)周练101.方程2551616xxxCC的解共有()A.1个B.2个C.3个D.4个2.已知随机变量X服从正态分布N(3.1),且(24)PX=0.6826,则p(X>4)=()A、0.1588B、0.1587C、0.1586D0.15853.[2014·湖北卷]根据如下样本数据:x345678y4.02.5-0.50.5-2.0-3.0得到的回归方程为y=bx+a,则()A.a>0,b>0B.a>0,b<0C.a<0,b>0D.a<0,b<04.下列四个命题:(1)随机误差e是衡量预报精确度的一个量,它满足E(e)=0(2)残差平方和越小的模型,拟合的效果越好;(3)用相关指数来刻画回归的效果时,的值越小,说明模型拟合的效果越好;(4)直线和各点的偏差是该坐标平面上所有直线与这些点的偏差中最小的直线.其中真命题的个数()A.1B.2C.3D.45.通过随机询问110名性别不同的大学生是否爱好某项运动,得到如下的列联表:男女总计爱好402060不爱好203050总计6050110算得,K2=≈7.8.参照附表,得到的正确结论是().A.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别有关”B.在犯错误的概率不超过0.1%的前提下,认为“爱好该项运动与性别无关”C.有99%以上的把握认为“爱好该项运动与性别有关”D.有99%以上的把握认为“爱好该项运动与性别无关”6.设某批产品合格率为,不合格率为,现对该产品进行测试,设第次首次测到正品,则()A.B.C.D.7.有个座位连成一排,现有人入座,则恰有两个空位相邻的不同坐法是()种A.B.C.D.P(K2≥k)0.0500.0100.001k3.8416.63510.82818.甲、乙两队进行排球决赛.现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为()A.B.C.D.9.设集合A={(x1,x2,x3,x4,x5)|xi∈{-1,0,1},i=1,2,3,4,5},那么集合A中满足条件“1≤|x1|+|x2|+|x3|+|x4|+|x5|≤3”的元素个数为()A.60B.90C.120D.13010.从正方体六个面的对角线中任取两条作为一对,其中所成的角为60°的共有()A.24对B.30对C.48对D.60对11.在二项式的展开式中,恰好第五项的二项式系数最大.(1)求展开式中各项的系数和;(2)求展开式中的有理项.12.一家面包房根据以往某种面包的销售记录,绘制了日销售量的频率分布直方图,如图所示.将日销售量落入各组的频率视为概率,并假设每天的销售量相互独立.(1)求在未来连续3天里,有连续2天的日销售量都不低于100个且另1天的日销售量低于50个的概率;(2)用X表示在未来3天里日销售量不低于100个的天数,求随机变量X的分布列,期望E(X)及方差D(X).13.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.一次购物量1至4件5至8件9至12件13至16件17件及以上顾客数(人)302510结算时间(分钟/人)11.522.53已知这100位顾客中的一次购物量超过8件的顾客占55%.(1)确定的值,并求顾客一次购物的结算时间的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过分钟的概率.(注:将频率视为概率)214.一袋中有6个黑球,4个白球.(1)依次取出3个球,不放回,已知第一次取出的是白球,求第三次取到黑球的概率;(2)有放回地依次取出3球,已知第一次取的是白球,求第三次取到黑球的概率;(3)有放回地依次取出3球,求取到白球个数X的分布列、期望和方差.15.为回馈顾客,某商场拟通过摸球兑奖的方式对1000位顾客进行奖励,规定:每位顾客从一个装有4个标有面值的球的袋中一次性随机摸出2个球,球上所标的面值之和为该顾客所获的奖励额.(1)若袋中所装的4个球中有1个所标的面值为50元,其余3个均为10元,求:(i)顾客所获的奖励额为60元的概率;(ii)顾客所获的奖励额的分布列及数学期望.(2)商场对奖励总额的预算是60000元,并规定袋中的4个球只能由标有面值10元和50元的两种球组成,或标有面值20元和40元的两种球组成.为了使顾客得到的奖励总额尽可能符合商场的预算且每位顾客所获的奖励额相对均衡,请对袋中的4个球的面值给出一个合适的设计,并说明理由.316.计划在某水库建一座至多安装3台发电机的水电站,过...