(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,满分60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.设复数z满足(1+i)z=2,其中i为虚数单位,则z=()A.2-2iB.2+2iC.1-iD.1+i解析:z====1-i.答案:C2.设回归方程y=3-5x,变量x增加一个单位时()A.y平均增加3个单位B.y平均减少5个单位C.y平均增加5个单位D.y平均减少3个单位解析:由回归方程知:y与x是负相关的,x每增加一个单位,y减少5个单位.答案:B3.由①正方形的四个内角相等;②矩形的四个内角相等;③正方形是矩形,根据“三段论”推理出一个结论,则作为大前提、小前提、结论的分别为()A.②①③B.③①②C.①②③D.②③①解析:根据三段论的一般形式,可以得到大前提是②,小前提是③,结论是①.答案:D4.观察数列1,2,2,3,3,3,4,4,4,4,…的特点,问第100项为()A.10B.14C.13D.100解析:由于1有1个,2有2个,3有3个,…,则13有13个,所以1~13的总个数为=91,从而第100个数为14.答案:B5.复数z满足(-1+i)z=(1+i)2,其中i为虚数单位,则在复平面上复数z对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限解析:z====1-i,故z在复平面内对应的点的坐标为(1,-1),位于第四象限.答案:D6.在等差数列{an}中,若an>0,公差d>0,则有a4·a6>a3·a7,类比上述性质,在等比数列{bn}中,若bn>0,q>1,则b4,b5,b7,b8的一个不等关系是()A.b4+b8>b5+b7B.b5+b7>b4+b8C.b4+b7>b5+b8D.b4+b5>b7+b8答案:A7.(山东高考)执行两次如图所示的程序框图,若第一次输入的x的值为7,第二次输入的x的值为9,则第一次、第二次输出的a的值分别为()1A.0,0B.1,1C.0,1D.1,0解析:当输入x=7时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x成立,故a=1,输出a的值为1.当输入x=9时,b=2,因为b2>x不成立且x不能被b整除,故b=3,这时b2>x不成立且x能被b整除,故a=0,输出a的值为0.答案:D8.已知a,b,c,d为正数,S=+++,则()A.0+++=1.∴10,x1≠1,且xn+1=(n∈N*),试证“数列{xn}对任意正整数n都满足xnxn+1”,当此题用反证法否定结论时,应为()A.对任意的正整数n,都有xn=xn+1B.存在正整数n,使xn>xn+1C.存在正整数n(n≥2),使xn≥xn+1且xn≤xn-1D.存在正整数n(n≥2),使(xn-xn-1)(xn-xn+1)≥0解析:命题的结论是等价于“数列{xn}是递增数列或是递减数列”,其反设是“数列既不是递增数列,也不是递减数列”,由此可知选D.答案:D12.已知面积为S的凸四边形中,四条边长分别记为a1,a2,a3,a4,点P为四边形内任意一点,且点P到四边的距离分别记为h1,h2,h3,h4,若====k,则h1+2h2+3h3+4h4=,类比以上性质,体积为V的三棱锥的每个面的面积分别记为S1,S2,S3,S4,此三棱锥内任一点Q到每个面的距离分别为H1,H2,H3,H4,若====k,则H1+2H2+3H3+4H4=()A.B.C.D.解析:根据三棱锥的体积公式V=Sh,得S1H1+S2H2+S3H3+S4H4=V,即S1H1+S2H2+S3H3+S4H4=3V,所以H1+2H2+3H3+4H4=.答案:B二、填空题(本大题共4...