课时作业29等差数列及其前n项和一、选择题1.等差数列{an}中,a4+a8=10,a10=6,则公差d=()A.B.C.2D.-解析:由a4+a8=2a6=10,得a6=5,所以4d=a10-a6=1,解得d=,故选A.答案:A2.(2018·陕西西安八校联考)设等差数列{an}的前n项和为Sn,且a2+a7+a12=24,则S13=()A.52B.78C.104D.208解析:依题意得3a7=24,a7=8,S13==13a7=104,选C.答案:C3.(2018·武汉调研)若等差数列{an}的前n项和Sn满足S4=4,S6=12,则S2=()A.-1B.0C.1D.3解析:本题考查等差数列的前n项和公式.由题意,得解得所以S2=2a1+d=0,故选B.答案:B4.(2018·河南许昌二模)已知等差数列{an}满足a1=1,an+2-an=6,则a11等于()A.31B.32C.61D.62解析: 等差数列{an}满足a1=1,an+2-an=6,∴a3=6+1=7,a5=6+7=13,a7=6+13=19,a9=6+19=25,a11=6+25=31.故选A.答案:A5.(2018·安徽合肥二模)已知是等差数列,且a1=1,a4=4,则a10=()A.-B.-C.D.解析:设的公差为d, a1=1,a4=4,∴3d=-=-,即d=-,则=+9d=-,故a10=-,故选A.答案:A6.(2018·洛阳市第一次统一考试)等差数列{an}为递增数列,若a+a=101,a5+a6=11,则数列{an}的公差d等于()A.1B.2C.9D.10解析:由题意得(a1+a10)2-2a1a10=(a5+a6)2-2a1a10=121-2a1a10=101,∴a1a10=10,又a1+a10=a5+a6=11,a1