电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(全国通用)高考数学 专项强化训练(五)-人教版高三全册数学试题VIP免费

(全国通用)高考数学 专项强化训练(五)-人教版高三全册数学试题_第1页
1/16
(全国通用)高考数学 专项强化训练(五)-人教版高三全册数学试题_第2页
2/16
(全国通用)高考数学 专项强化训练(五)-人教版高三全册数学试题_第3页
3/16
专项强化训练(五)圆锥曲线的综合问题1.已知直线l:y=x+1,圆O:x2+y2=,直线l被圆截得的弦长与椭圆C:=1(a>b>0)的短轴长相等,椭圆的离心率e=.(1)求椭圆C的方程.(2)过点的直线l0交椭圆于A,B两点,试问:在坐标平面上是否存在一个定点T,使得无论l0如何转动,以AB为直径的圆恒过定点T?若存在,求出点T的坐标;若不存在,请说明理由.【解题提示】(1)利用弦长公式及离心率公式求出a,b的值,从而求得椭圆C的方程.(2)先根据直线l0的斜率不存在及斜率为0的情况确定T的坐标,然后再证明以AB为直径的圆恒过定点T即可.【解析】(1)由题意知,圆O的半径r=,圆O(0,0)到直线y=x+1的距离d=,则直线l被圆截得的弦长为,依题意2=2b,b=1.又椭圆的离心率,所以椭圆C的方程为+y2=1.(2)假设存在定点T(x0,y0),设A(x1,y1),B(x2,y2)(x1≤x2).当直线l0的斜率不存在时,易知A(0,1),B(0,-1),则圆的方程为x2+y2=1.当直线l0的斜率为0时,直线l0的方程为y=-,代入椭圆方程可得即圆的方程为易知T(0,1).下面证明,当直线l0的斜率存在且不为0时,T(0,1)也符合.设直线l0的方程为y=kx-,联立消去y得(2k2+1)x2-=0.则.此时,=(x1,y1-1),=(x2,y2-1),即当直线l0的斜率存在且不为0时,以AB为直径的圆恒过点T(0,1).综上所述,存在定点T,其坐标为(0,1).【加固训练】已知椭圆C:=1(a>b>0)的左,右焦点分别为F1,F2,A为上顶点,△AF1F2为正三角形,以AF2为直径的圆与直线y=x+2相切.(1)求椭圆C的标准方程.(2)过点F2作斜率为k的直线l与椭圆交于M,N两点,在x轴上是否存在点P(m,0),使得=+时四边形PMQN为菱形,且点Q在椭圆C上?若存在,求m的值;若不存在,请说明理由.【解析】(1)由已知△AF1F2为正三角形,由A(0,b),F2(c,0),得AF2的中点,点B到直线y=x+2的距离为解得a2=4,b2=3,所以椭圆C的标准方程为=1.(2)由(1)可知F2(1,0),设直线l的方程为y=k(x-1).联立方程,得整理得(3+4k2)x2-8k2x+4k2-12=0,设M(x1,y1),N(x2,y2),由根与系数的关系得x1+x2=,则y1+y2=k(x1+x2-2)=,又=(x1-m,y1),=(x2-m,y2),所以=+=(x1+x2-2m,y1+y2)得5k4+16k2+12=0,因为5k4+16k2+12>0恒成立,故满足条件的点P(m,0)不存在.2.过x轴上动点A(a,0)引抛物线y=x2+1的两条切线AP,AQ.切线斜率分别为k1和k2,切点分别为P,Q.(1)求证:k1·k2为定值,并且直线PQ过定点.(2)记S为面积,当最小时,求·的值.【解析】(1)方法一:设过A点的直线为:y=k(x-a),与抛物线联立得得x2-kx+ka+1=0,Δ=k2-4ak-4=0,所以k1+k2=4a,k1·k2=-4为定值.抛物线方程y=x2+1,求导得y′=2x,设切点P,Q的坐标分别为(xP,yP),(xQ,yQ),k1=2xP,k2=2xQ,所以xP+xQ=2a,xP·xQ=-1.直线PQ的方程:y-yP=(x-xP),由yP=+1,yQ=+1,得到y=(xP+xQ)x-xPxQ+1,整理可得y=2xa+2,所以直线PQ过定点(0,2).方法二:设切点P,Q的坐标分别为(xP,yP),(xQ,yQ),求导得y′=2x,所以lAP:y=2xP(x-a),(xP,yP)在直线上,即yP=2xP(xP-a),由P(xP,yP)在抛物线方程上得yP=+1,整理可得yP=2xPa+2,同理yQ=2xQa+2,所以lQP:y=2xa+2,所以直线PQ过定点(0,2).联立PQ的直线方程lQP:y=2xa+2和抛物线方程y=x2+1,可得:x2-2xa-1=0.所以xPxQ=-1,xP+xQ=2a,所以k1·k2=2xP×2xQ=-4为定值.(2)设A到PQ的距离为d.当且仅当t=时取等号,即a=±.因为·=(xP-a,yP)·(xQ-a,yQ)=xPxQ-a(xP+xQ)+a2+yPyQ,yPyQ=(2xPa+2)(2xQa+2)=4a2xPxQ+4+4a(xP+xQ)=4a2+4,所以·=3a2+3=.3.(2015·郑州模拟)如图,已知抛物线C:y2=2px和☉M:(x-4)2+y2=1,圆心点M到抛物线C的准线的距离为.过抛物线C上一点H(x0,y0)(y0≥1)作两条直线分别与☉M相切于A,B两点,与抛物线C交于E,F两点.(1)求抛物线C的方程.(2)当∠AHB的角平分线垂直x轴时,求直线EF的斜率.(3)若直线AB在y轴上的截距为t,求t的最小值.【解题提示】(1)由题意列方程,求出p的值,即可得抛物线C的方程.(2)联立直线与抛物线的方程得E,F的坐标,再利用直线的斜率公式得出结论.(3)方法一:设出点A,B的坐标,由点斜式求出直线HA,HB的方程,进而得到直线AB的方程,令x=0,求出纵截距t的表达式,由函数单调性求出t的最小值.方法二:连接HM,求出以H为圆心,HA为半径的圆的方程,进而可得直线AB的方程,令x=0,求出纵截距t的表达式,由函数单调性求出t的最小值.【解析】(1)由题意知☉M的圆心M的坐标为(4,0),半径为1,抛物线C的准线方...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(全国通用)高考数学 专项强化训练(五)-人教版高三全册数学试题

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部