电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

(浙江专版)高考数学一轮复习 第7章 立体几何 第7节 立体几何中的向量方法教师用书-人教版高三全册数学试题VIP免费

(浙江专版)高考数学一轮复习 第7章 立体几何 第7节 立体几何中的向量方法教师用书-人教版高三全册数学试题_第1页
1/14
(浙江专版)高考数学一轮复习 第7章 立体几何 第7节 立体几何中的向量方法教师用书-人教版高三全册数学试题_第2页
2/14
(浙江专版)高考数学一轮复习 第7章 立体几何 第7节 立体几何中的向量方法教师用书-人教版高三全册数学试题_第3页
3/14
第七节立体几何中的向量方法1.直线的方向向量与平面的法向量(1)直线的方向向量:如果表示非零向量a的有向线段所在直线与直线l平行或重合,则称此向量a为直线l的方向向量.(2)平面的法向量:直线l⊥α,取直线l的方向向量a,则向量a叫做平面α的法向量.2.空间位置关系的向量表示直线l1,l2的方向向量分别为n1,n2l1∥l2n1∥n2⇔n1=λn2l1⊥l2n1⊥n2⇔n1·n2=0直线l的方向向量为n,平面α的法向量为ml∥αn⊥m⇔n·m=0l⊥αn∥m⇔n=λm平面α,β的法向量分别为n,mα∥βn∥m⇔n=λmα⊥βn⊥m⇔n·m=03.求两条异面直线所成的角设a,b分别是两异面直线l1,l2的方向向量,则l1与l2所成的角θa与b的夹角〈a,b〉范围0<θ≤0<〈a,b〉<π关系cosθ=|cos〈a,b〉|=cos〈a,b〉=4.求直线与平面所成的角设直线l的方向向量为a,平面α的法向量为n,直线l与平面α所成的角为θ,则sinθ=|cos〈a,n〉|=.5.求二面角的大小(1)若AB,CD分别是二面角αlβ的两个面内与棱l垂直的异面直线,则二面角的大小就是向量AB与CD的夹角(如图①).图(2)设n1,n2分别是二面角αlβ的两个面α,β的法向量,则向量n1与n2的夹角(或其补角)的大小就是二面角的平面角的大小(如图②③).1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)两直线的方向向量所成的角就是两条直线所成的角.()(2)直线的方向向量和平面的法向量所成的角就是直线与平面所成的角.()(3)两个平面的法向量所成的角是这两个平面所成的角.()(4)两异面直线夹角的范围是,直线与平面所成角的范围是,二面角的范围是[0,π].1[答案](1)×(2)×(3)×(4)√2.(教材改编)设u=(-2,2,t),v=(6,-4,4)分别是平面α,β的法向量.若α⊥β,则t=()A.3B.4C.5D.6C[ α⊥β,则u·v=-2×6+2×(-4)+4t=0,∴t=5.]3.直三棱柱ABCA1B1C1中,∠BCA=90°,M,N分别是A1B1,A1C1的中点,BC=CA=CC1,则BM与AN所成角的余弦值为()A.B.C.D.C[建立如图所示的空间直角坐标系Cxyz,设BC=2,则B(0,2,0),A(2,0,0),M(1,1,2),N(1,0,2),所以BM=(1,-1,2),AN=(-1,0,2),故BM与AN所成角θ的余弦值cosθ===.]4.如图771所示,在正方体ABCDA1B1C1D1中,O是底面正方形ABCD的中心,M是D1D的中点,N是A1B1的中点,则直线ON,AM的位置关系是________.【导学号:51062247】图771垂直[以A为原点,分别以AB,AD,AA1所在直线为x,y,z轴,建立空间直角坐标系(图略),设正方体的棱长为1,则A(0,0,0),M,O,N,AM·ON=·=0,∴ON与AM垂直.]5.(2017·湖州模拟)过正方形ABCD的顶点A作线段PA⊥平面ABCD,若AB=PA,则平面ABP与平面CDP所成的二面角为________.45°[如图,建立空间直角坐标系,设AB=PA=1,则A(0,0,0),D(0,1,0),P(0,0,1),由题意,AD⊥平面PAB,设E为PD的中点,连接AE,则AE⊥PD,又CD⊥平面PAD,∴CD⊥AE,从而AE⊥平面PCD.∴AD=(0,1,0),AE=分别是平面PAB,平面PCD的法向量,且〈AD,AE〉=45°.故平面PAB与平面PCD所成的二面角为45°.]2利用向量证明平行与垂直问题如图772所示,在底面是矩形的四棱锥PABCD中,PA⊥底面ABCD,E,F分别是PC,PD的中点,PA=AB=1,BC=2.(1)求证:EF∥平面PAB;(2)求证:平面PAD⊥平面PDC.图772[证明]以A为原点,AB,AD,AP所在直线分别为x轴,y轴,z轴,建立空间直角坐标系如图所示,则A(0,0,0),B(1,0,0),C(1,2,0),D(0,2,0),P(0,0,1),所以E,F,EF=,AP=(0,0,1),AD=(0,2,0),DC=(1,0,0),AB=(1,0,0).3分(1)因为EF=-AB,所以EF∥AB,即EF∥AB.又AB⊂平面PAB,EF⊄平面PAB,所以EF∥平面PAB.6分(2)因为AP·DC=(0,0,1)·(1,0,0)=0,AD·DC=(0,2,0)·(1,0,0)=0,所以AP⊥DC,AD⊥DC,即AP⊥DC,AD⊥DC.10分又因为AP∩AD=A,AP⊂平面PAD,AD⊂平面PAD,所以DC⊥平面PAD.因为DC⊂平面PDC,所以平面PAD⊥平面PDC.15分[规律方法]1.利用向量证明平行与垂直,充分利用已知的线面垂直关系构建空间直角坐标系,准确写出相关点的坐标,从而将几何证明转化为向量运算.其中灵活建系是解题的关键.2.运用向量知识判定空间位置关系,不可忽视几何...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

(浙江专版)高考数学一轮复习 第7章 立体几何 第7节 立体几何中的向量方法教师用书-人教版高三全册数学试题

您可能关注的文档

状元书店+ 关注
实名认证
内容提供者

热爱教学事业,对互联网知识分享很感兴趣

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部