空间中直线与直线间的位置关系班级:姓名:_____________1.(2016·杭州高二检测)正方体AC1中,E,F分别是边BC,C1D的中点,则直线A1B与直线EF的位置关系是()A.相交B.异面C.平行D.垂直【解析】选A.如图所示,连接CD1,则CD1与C1D的交点为点F,由正方体可得四边形A1BCD1是平行四边形,在平行四边形A1BCD1内,E,F分别是边BC,CD1的中点,所以EF∥BD1,所以直线A1B与直线EF相交.2.若空间中四条两两不同的直线l1,l2,l3,l4满足l1⊥l2,l2∥l3,l3⊥l4,则下列结论一定正确的是()A.l1⊥l4B.l1∥l4C.l1与l4既不垂直也不平行D.l1与l4的位置关系不确定【解题指南】由于l2∥l3,所以l1与l4的位置关系可以通过同垂直于一条直线的两条直线加以判断.【解析】选D.因为l2∥l3,所以l1⊥l2,l3⊥l4实质上就是l1与l4同垂直于一条直线,所以l1⊥l4,l1∥l4,l1与l4既不垂直也不平行都有可能成立,但不是一定成立,故l1与l4的位置关系不确定.3.空间四边形的两条对角线相互垂直,顺次连接四边中点的四边形一定是()A.空间四边形B.矩形C.菱形D.正方形【解析】选B.如图,易证四边形EFGH为平行四边形.又因为E,F分别为AB,BC的中点,所以EF∥AC,又FG∥BD,所以∠EFG或其补角为AC与BD所成的角,而AC与BD所成的角为90°,所以∠EFG=90°,故四边形EFGH为矩形.4.已知在正方体ABCD-A1B1C1D1中(如图),l⊂平面A1B1C1D1,且l与B1C1不平行,则下列一定不可能的是()1A.l与AD平行B.l与AD不平行C.l与AC平行D.l与BD垂直【解析】选A.假设l∥AD,则由AD∥BC∥B1C1,知l∥B1C1,这与l与B1C1不平行矛盾,所以l与AD不平行.5.如图,E,F是AD上互异的两点,G,H是BC上互异的两点,由图可知,①AB与CD互为异面直线;②FH分别与DC,DB互为异面直线;③EG与FH互为异面直线;④EG与AB互为异面直线.其中叙述正确的是()A.①③B.②④C.①④D.①②【解析】选A.AB与平面BCD交于B点,且B∉CD,故AB与CD互为异面直线,故①正确;当H点落在C或F落在D点上时,FH与CD相交;当H落在B或F点落在D上时,FH与DB相交,故②错误;FH与平面EGD交于F点,而F∉EG,故EG与FH互为异面直线,故③正确;当G落在B上或E落在A上时,EG与AB相交,故④错误.6.如图,在空间四边形ABCD中,AD=BC=2,E,F分别为AB,CD的中点,EF=,则AD与BC所成的角为()A.30°B.60°C.90°D.120°【解析】选C.取AC的中点G,连接EG,FG,则EGBC,FGDA.所以△EGF的三边是EF=,EG=1,FG=1,所以EF2=EG2+FG2,所以△EGF为直角三角形,∠EGF=90°,即为AD与BC所成的角.7.如图,正四棱台ABCD-A′B′C′D′中,A′D′所在的直线与BB′所在的直线是()2A.相交直线B.平行直线C.不互相垂直的异面直线D.互相垂直的异面直线【解析】选C.若A′D′与B′B共面,则A′B′也在此平面内,因A′B′与B′B相交,其确定的平面为ABB′A′,故A′D′⊂平面ABB′A′与ABCD-A′B′C′D′为四棱台矛盾,故A′D′与B′B异面.又因为四边形BCC′B′是等腰梯形,所以BB′与B′C′不垂直,因B′C′∥A′D′.即BB′与A′D′不垂直.8.在正方体ABCD-A′B′C′D′中,点P在线段AD′上运动,则异面直线CP与BA′所的θ角的取值范围是()A.0<θ