安徽省江淮十校2021届高三数学第一次联考试题理注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,在每小题给出的四个选项中,只有一个选项是符合题目要求的。1.设复数满足,则虛部是()A.B.C.3D.-32.已知函数是定义在上的偶函数,且在上单调递增,则三个数,,的大小关系为()A.B.C.D.3.若实数,满足约束条件,则()A.既有最大值也有最小值B.有最大值,但无最小值C.有最小值,但无最大值D.既无最大值也无最小值4.已知函数在[-6,6]的图像大致为()A.B.C.D.5.由于受疫情的影响,学校停课,同学们通过三种方式在家自主学习,现学校想了解同学们对假期学习方式的满意程度,收集如图1所示的数据;教务处通过分层抽样的方法抽取4%的同学进行满意度调查,得到的数据如图2.下列说法错误的是()A.样本容量为240B.若,则本次自主学习学生的满意度不低于四成C.总体中对方式二满意的学生约为300人D.样本中对方式一满意的学生为24人6.已知某几何体的三视图如图所示,网格纸上小正方形的边长为1,则该几何体的表面积为()A.B.C.D.7.若展开式中的常数项是60,则实数的值为()A.±3B.±2C.3D.28.已知三个不同的平面、、,两条不同的直线、,则下列结论正确的是()A.,,是的充分条件B.与,所成的锐二面角相等是的充要条件C.,,是的充分条件D.内距离为的两条平行线在内的射影仍是距离为的两条平行线是的充要条件9.在我国南宋数学家杨辉所著的《详解九章算法》一书中,用如图所示的三角形(杨辉三角)解释了二项和的乘方规律。右边的数字三角形可以看作当依次取0,1,2,3,…时展开式的二项式系数,相邻两斜线间各数的和组成数列.例,,,…,设数列的前项和为.如果,则=()A.B.C.D.10.已知函数,若存在实数,对任意都有成立.则的最小值为()A.B.C.D.11.已知抛物线:,直线、与抛物线分别交于,和,两点,其中过焦点,,令,若,则的最大值为()A.B.C.D.12.已知函数,且在上单调递减,则的取值范围为()A.B.C.D.二、填空题:13.已知非零向量,满足,且,则与的夹角为________.14.已知为双曲线右支上一点(非顶点),、分别为双曲线的左右焦点,点为的内心,若,则该双曲线的离心率为________.15.经过班级同学初选后,将从5名男生和3名女生中选出4人分别担任班长、学习委员、劳动委员,文艺委员.其中男生甲不适合担任学习委员,女生乙不适合担任劳动委员现要求:如果男生甲入选,则女生乙必须入选。则安排方法种数为________.16.在三棱锥中,,,,,是线段上的动点,记直线与平面所成的角为,若的最大值为,为线段的中点,过点作三棱锥外接球的截面,则该截面面积的取值范围为________.三、解答题:解答应写出文字说明、证明过程或演算步骤。17.已知函数.(1)求函数的单调递增区间;(2)已知的三个内角、、的对边分别为、、,其中,若锐角满足,且,求的值.18.已知公比大于1的等比数列满足,,.(1)求数列、的通项公式;(2)若数列的前项和为,求的前项和.19.如图,已知圆的直径长为2,上半圆圆弧上有一点,,点是弧上的动点,点是下半圆弧的中点,现以为折线,将下半圆所在的平面折成直二面角,连接、、.(1)当时,求的长;(2)当三棱锥体积最大时,求二面角的余弦值.20.2020年6月28日上午,未成年人保护法修订草案二审稿提请十三届全国人大常委第二十次会议审议,修改草案二审稿针对监护缺失、校园欺凌研究损害、网络沉迷等问题,进一步压实监护人、学校住宿经营者网络服务提供者等主体,加大对未成年人保护力度我校为宣传未成年保护法,特举行一次未成年人保护法知识竞赛,两人组,每一轮竞赛中,小组两人分别答两题,若答对题数不少于3题,被称为“优秀小组”,已知甲乙两位同学组成一组,且同学甲和同学乙答...