第六章数列第四节:等差与等比数列综合应用一、基础题1.数列na的首项为3,nb为等差数列,且)(1Nnaabnnn,若23b,1210b,则8a()A.0B.3C.8D.112.三个数a,b,c既是等差数列,又是等比数列,则a,b,c间的关系为()A.b-a=c-bB.b2=acC.a=b=cD.a=b=c≠03.若na是等比数列,前n项和21nnS,则2222123naaaa()A.2(21)nB.21(21)3nC.41nD.1(41)3n4.已知数列{na}满足)(loglog1133Nnaann,且2469aaa,则15793log()aaa的值是()A.15B.15C.5D.55.已知等差数列na前n项和为nS,404S,nS210,4nS130,则n=()(A)12(B)14(C)16(D)186.数列,3211,3211,211n的前n项和为()(A)1nn(B)12nn(C)2nn(D))1(2nn7.已知cba,,成等比数列,m是a与b的等差中项,n是b与c的等差中项,则ncma()(A)1(B)2(C)21(D)418.设2a=3,2b=6,2c=12,则数列a,b,c是()(A)是等差数列,但不是等比数列(B)是等比数列,但不是等差数列(C)既是等差数列,又是等比数列(D)非等差数列,又非等比数列9.若等比数列na的前n项和rSnn3,则r=()(A)0(B)-1(C)1(D)310.已知数列,nnab满足*11111,2,nnnnbabaanNb,则数列nab的前10项和为()A.101413B.104413C.91413D.9441311.已知数列}{na的通项公式为*)(21log2Nnnnan,设其前n项和为Sn,则使5nS成立的自然数n()A.有最大值63B.有最小值63C.有最大值32D.有最小值3212.一个等比数列}{na的前n项和为48,前2n项和为60,则前3n项和为()A、63B、108C、75D、8313.已知等比数列{}na满足0,1,2,nan,且25252(3)nnaan,则当1n时,2123221logloglognaaa.14.在等比数列{}na中,337,21aS,则公比.二、中档题1.设数列nn1)1(的前n项和为nS,则2013S.2.数列na中,)2,(122,511nNnaaannn,若存在实数,使得数列nna2为等差数列,则=3.两个等差数列,,nnba,327......2121nnbbbaaann则55ba=___________.4.已知na是等差数列,其中1425,16aa.(1)求数列{}na的通项公式;___________(2)求13519aaaa值.___________________