直线与圆的位置关系1、圆的直径是13cm,如果直线和圆心的距离分别是①4.5cm;②6.5cm;③8cm,那么直线和圆分别是什么位置关系?有几个公共点?2、已知⊙A的直径为6,点A的坐标为(-3,-4),则⊙A与x轴的位置关系是_____,⊙A与y轴的位置关系是______.3、例Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.4、已知⊙O到直线l的距离为d,⊙O的半径为r,若d、r是方程x2-7x+12=0的两个根,则直线l和⊙O的位置关系是______________.1、圆的直径是13cm,如果直线和圆心的距离分别是①4.5cm;②6.5cm;③8cm,那么直线和圆分别是什么位置关系?有几个公共点?2、已知⊙A的直径为6,点A的坐标为(-3,-4),则⊙A与x轴的位置关系是_____,⊙A与y轴的位置关系是______.3、例Rt△ABC,∠C=90°,AC=3cm,BC=4cm,以C为圆心,r为半径的圆与AB有怎样的位置关系?为什么?(1)r=2cm;(2)r=2.4cm;(3)r=3cm.4、已知⊙O到直线l的距离为d,⊙O的半径为r,若d、r是方程x2-7x+12=0的两个根,则直线l和⊙O的位置关系是______________.自学目标:理解用频率来估计概率的方法;了解概率的实验背景及其现实意义.学习重点:通过对事件发生的频率的分析来估计事件发生的概率学习难点:合理设计模拟试验,分析频率稳定值从而得到该事件的概率一、知识链接:1、在生产的100件产品中,有95件正品,5件次品。从中任抽一件是次品的概率为().A.0.05B.0.5C.0.95D.952.在一个不透明的布袋中,红色、黑色、白色的玻璃球共有40个,除颜色其他外完全相同,小李通过多次摸球试验后发现其中摸到红色、黑色球的频率分别为15%和45%,则口袋中白色球的数目很可能是()(A)6(B)16(C)18(D)24二、合作学习:3.实验:小组合作完成教材P142实验,并记录在下表中:实验次数n50100150200250300350400450500正面向上的频数m正面向上的频率mn描点:正面向上的频率14.思考:(1)分析上面图像可以得出频率随着实验次数的增加,稳定于左右.(2)从试验数据看,硬币正面向上的概率估计是(3)根据推理计算可知,抛掷硬币一次正面向上的概率应该是结论:对于一般的随机事件,在大量重复试验时,随着实验次数的增加,一件事件出现的频率,总在一个数的附近摆动,我们就可以用这个数去估计此事件的概率。归纳:一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率:P(A)=p通常我们用频率估计出来的概率是一个近似值,即概率约为p。三、课堂练习5.下表记录了一名球员在罚球线上投篮的结果.投篮次数(n)50100150200250300500投中次数(m)286078104123152251投中频率(m/n)(1)计算表中的投中频率(精确到0.01);(2)这名球员投蓝一次,投中的概率约是多少?(精确到0.1)?6.当试验的所有可能结果不是有限个,或各种可能结果发生的可能性不相等时,求概率是用().A.通过统计频率估计概率B.用列举法求概率C.用列表法求概率D.用树形图法求概率四、当堂检测50100150200250300350400450500……试验次数n0.57.盒子中有白色乒乓球8个和黄色乒乓球若干个,为求得盒中黄色乒乓球的个数,某同学进行了如下实验:每次摸出一个乒乓球记下它的颜色,如此重复360次,摸出白色乒乓球90次,则黄色乒乓球的个数估计为()A.90个B.24个C.70个D.32个8.从生产的一批螺钉中抽取1000个进行质量检查,结果发现有5个是次品,那么从中任取1个是次品概率约为().A.11000B.1200C.12D.159.某人把50粒黄豆染色后与一袋黄豆充分混匀,接着抓出100黄豆,数出其中有10粒黄豆被染色,则这袋黄豆原来有().A.10粒B.160粒C.450粒D.500粒10.在一个暗箱里放有a个除颜色外其他完全相同的球,这a个球中红球只有3个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱。通过大量重复摸球实验后发现,摸到红球的频率稳定在25%,那么推算出a大约是()A.12B.9C.4D.311.在抛一枚均匀硬币的实验中,如果没有硬币,则下列可作为替代物的是()A.一颗均匀的骰子B.瓶盖C.图钉D.两张扑克牌(1张黑桃,1张红桃)一般地,在大量重复试验中,如果事件A发生的频率稳定于某个常数p,那么事件A发生概率的概率:P(A)=p通常我们用频率估计出来的概率是一个近似值,即概率约为p。