第04天简单的三角恒等变换高考频度:★★★★☆难易程度:★★★☆☆典例在线(1)已知)os(4c35,则sinsin3()A.435B.335C.335D.435(2)已知(,0)2,4cos5,则tan2A.3B.3C.13D.13(3)已知非零实数a,b满足关系式sincos855tan15cossin55abab,则ba的值是______________.【参考答案】(1)A;(2)D;(3)3.【试题解析】(1)3343sin()sinsincos3cos32235(),故选A.(2)由(,0)2及43cossin55,故3sin15tan421cos315.故选D.(3)由题可得2222sincossin8555tantantan51553cossincos5()()()()55abababab,其中sin22bab,22cosaab,所以3k,kZ,所以tanbatan()tan333k.1【解题必备】(1)半角公式:sin21cos2,cos21cos2,tan21cos1cos.(2)积化和差公式:1coscos[cos()cos()]2,1sinsin[cos()2cos()],1sincos[sin()sin()]2,1cossin[sin()sin()]2.利用辅助角公式可将形如sincosyaxbx的函数转化为形如sin()yAx的函数,此形式可方便地研究函数的性质,体现了转化与化归思想.学霸推荐1.下列各式中,值为12的是A.sin15cos15B.22cossin1212C.2tan22.51tan22.5D.1cos3022.已知,均为锐角,且sin22sin2,则A.tan()3tan()B.tan()2tan()2C.3tan()tan()D.3tan()2tan()3.已知π0π2,且3sin5,4cos()5,则sinA.0B.2425C.1625D.2425或16252.【答案】A【解析】因为sin22sin2,所以1(sin2sin2)tan()sin()cos()21tan()cos()sin()(sin2sin2)23sin23sin2,即tan()3tan(),故选A.3.【答案】B【解析】因为π0π2,所以4cos5,3sin()5.当3sin()5时,3443sinsin[()]sin()coscos()sin05555,不合题意,应舍去;当33sin()5时,3443sinsin[()]sin()coscos()sin55552425,故选B.4