第18练圆锥曲线的定义、方程及性质[明晰考情]1.命题角度:圆锥曲线是高考的热点,每年必考,小题中考查圆锥曲线的定义、方程、离心率等.2.题目难度:中档难度或偏难.考点一圆锥曲线的定义与标准方程方法技巧(1)椭圆和双曲线上的点到两焦点的距离可以相互转化,抛物线上的点到焦点的距离等于到准线的距离.(2)求圆锥曲线方程的常用方法:定义法、待定系数法.1.已知A(0,7),B(0,-7),C(12,2),以C为一个焦点作过A,B的椭圆,则椭圆的另一个焦点F的轨迹方程是()A.y2-=1B.x2-=1C.y2-=1(y≤-1)D.x2-=1(x≥1)答案C解析由两点间距离公式,可得|AC|=13,|BC|=15,|AB|=14,因为A,B都在椭圆上,所以|AF|+|AC|=|BF|+|BC|,|AF|-|BF|=|BC|-|AC|=2<14,故F的轨迹是以A,B为焦点的双曲线的下支.由c=7,a=1,得b2=48,所以点F的轨迹方程是y2-=1(y≤-1),故选C.2.已知双曲线-=1(a>0,b>0)的左焦点为F,离心率为.若经过F和P(0,4)两点的直线平行于双曲线的一条渐近线,则该双曲线的方程为()A.-=1B.-=1C.-=1D.-=1答案B解析由e=知a=b,且c=a.∴双曲线渐近线方程为y=±x.又kPF===1,∴c=4,则a2=b2==8.故双曲线方程为-=1.3.已知椭圆+=1的两个焦点是F1,F2,点P在该椭圆上,若|PF1|-|PF2|=2,则△PF1F2的面积是________.答案1解析由椭圆的方程可知a=2,c=,且|PF1|+|PF2|=2a=4,又|PF1|-|PF2|=2,所以|PF1|=3,|PF2|=1.又|F1F2|=2c=2,所以有|PF1|2=|PF2|2+|F1F2|2,即△PF1F2为直角三角形,且∠PF2F1为直角,所以=|F1F2||PF2|=×2×1=.4.已知抛物线y=x2,A,B是该抛物线上两点,且|AB|=24,则线段AB的中点P离x轴最近时点P的纵坐标为________.答案8解析由题意得抛物线的标准方程为x2=16y,焦点F(0,4),设A(x1,y1),B(x2,y2),由|AB|≤|AF|+|BF|=(y1+4)+(y2+4)=y1+y2+8,∴y1+y2≥16,则线段AB的中点P的纵坐标y=≥8,∴线段AB的中点P离x轴最近时点P的纵坐标为8.考点二圆锥曲线的几何性质要点重组在椭圆中:a2=b2+c2,离心率为e==;在双曲线中:c2=a2+b2,离心率为e==.5.(2018·全国Ⅱ)双曲线-=1(a>0,b>0)的离心率为,则其渐近线方程为()A.y=±xB.y=±xC.y=±xD.y=±x答案A解析双曲线-=1的渐近线方程为bx±ay=0.又 离心率==,∴a2+b2=3a2,∴b=a(a>0,b>0).∴渐近线方程为ax±ay=0,即y=±x.故选A.6.(2018·全国Ⅲ)设F1,F2是双曲线C:-=1(a>0,b>0)的左、右焦点,O是坐标原点.过F2作C的一条渐近线的垂线,垂足为P.若|PF1|=|OP|,则C的离心率为()A.B.2C.D.答案C解析如图,过点F1向OP的反向延长线作垂线,垂足为P′,连接P′F2,由题意可知,12PFFS△2四边形PF1P′F2为平行四边形,且△PP′F2是直角三角形.因为|F2P|=b,|F2O|=c,所以|OP|=a.又|PF1|=a=|F2P′|,|PP′|=2a,所以|F2P|=a=b,所以c==a,所以e==.7.在平面直角坐标系xOy中,双曲线-=1(a>0,b>0)的右支与焦点为F的抛物线x2=2py(p>0)交于A,B两点,若|AF|+|BF|=4|OF|,则该双曲线的渐近线方程为______.答案y=±x解析设A(x1,y1),B(x2,y2),由得a2y2-2pb2y+a2b2=0,∴y1+y2=.又 |AF|+|BF|=4|OF|,∴y1++y2+=4×,即y1+y2=p,∴=p,即=,∴=,∴双曲线的渐近线方程为y=±x.8.已知双曲线C:-=1(a>0,b>0)的右顶点为A,以A为圆心,b为半径作圆A,圆A与双曲线C的一条渐近线交于M,N两点.若∠MAN=60°,则C的离心率为________.答案解析如图,由题意知点A(a,0),双曲线的一条渐近线l的方程为y=x,即bx-ay=0,∴点A到l的距离d=.又∠MAN=60°,|MA|=|NA|=b,∴△MAN为等边三角形,∴d=|MA|=b,即=b,∴a2=3b2,∴e===.3考点三圆锥曲线的综合问题方法技巧(1)圆锥曲线范围、最值问题的常用方法定义性质转化法;目标函数法;条件不等式法.(2)圆锥曲线中的定值、定点问题可以利用特例法寻求突破,然后对一般情况进行证明.9.如图,点F1,F2是椭圆C1的左、右焦点,椭圆C1与双曲线C2的渐近线交于点P,PF1⊥PF2,椭圆C1与双曲线C2的离心率...