第5课函数的定义域与值域(本课对应学生用书第10-11页)自主学习回归教材1.函数的定义域(1)函数的定义域是构成函数的非常重要的部分,若没有标明定义域,则认为定义域是使得函数解析式有意义的x的取值范围.(2)分式中分母应不等于0;偶次根式中被开方数应为非负数,奇次根式中被开方数为一切实数;零指数幂中底数不等于0,负分数指数幂中底数应大于0.(3)对数式中,真数必须大于0,底数必须大于0且不等于1,含有三角函数的角要使该三角函数有意义等.(4)实际问题中还需考虑自变量的实际意义,若解析式由几个部分组成,则定义域为各个部分相应集合的交集.2.求函数值域主要的几种方法(1)函数的定义域与对应法则直接制约着函数的值域,对于一些比较简单的函数可直接通过观察法求得值域.(2)二次函数或可转化为二次函数形式的问题,常用配方法求值域.(3)分子、分母是一次函数或二次齐次式的有理函数常用分离变量法求值域;分子、分母中含有二次项的有理函数,常用判别式法求值域(主要适用于定义域为R的函数).(4)单调函数常根据函数的单调性求得值域.(5)很多函数可拆配成基本不等式的形式,利用基本不等式求值域.(6)有些函数具有明显的几何意义,可根据几何意义的方法求值域.(7)只要是能求导数的函数常可用导数的方法求值域.1.(必修1P24练习6改编)函数f(x)=x2-2x的定义域为,值域为.[答案]R[-1,+∞)2.(必修1P93复习题1改编)函数f(x)=x-1+1x4的定义域为.[答案][1,+∞)1[解析]由题意得x-10,x40,解得x≥1.3.(必修1P93复习题5改编)已知一个函数的解析式为f(x)=2x+1,它的值域为{-1,2,5,8},则它的定义域为.[答案]17-1,,2,22[解析]由每个输出值求出相应的输入值.4.(必修1P43习题3改编)函数y=x-x(x≥0)的最大值为.[答案]14[解析]y=x-x=-(x)2+x=-21x-2+14,所以ymax=14.5.(必修1P93复习题12改编)函数f(x)=11-x+log3(3x-1)的定义域为.[答案]1,13[解析]由题意得1-x0,3x-10,解得13