山东省泰安市2020届高三数学第五次模拟考试(全国模拟)试题本试卷共6页,22题。全卷满分150分。考试用时120分钟。注意事项:1.答题前,先将自己的姓名、考号等填写在试题卷和答题卡上,并将准考证号条形码粘贴在答题卡上的指定位置。2.选择题的作答:选出每小题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。写在试题卷、草稿纸和答题卡上的非答题区域均无效。3.填空题和解答题的作答:用签字笔直接写在答题卡上对应的答题区域内。写在试题卷、草稿纸和答题卡上的非答题区域均无效。4.考试结束一定时间后,通过扫描二维码查看讲解试题的视频。一、单项选择题(本题共8小题,每小题5分,共40分。在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知复数z满足A.B.2C.D.82.已知集合,则A.B.C.D.3.已知集合则A.B.C.D.4.的展开式中,的系数为A.2B.C.3D.5.函数的图象关于y轴对称,则函数的部分图象大致为6.在3世纪中期,我国古代数学家刘徽在《九章算术注》中提出了割圆术:“割之弥细,所失弥少,割之又割,以至于不可割,则与圆合体,而无所失矣”.这可视为中国古代极限观念的佳作.割圆术可以视为将一个圆内接正边形等分成个等腰三角形(如图所示),当变得很大时,等腰三角形的面积之和近似等于圆的面积.运用割圆术的思想,可得到sin3°的近似值为(取近似值3.14)A.0.012B.0.052C.0.125D.0.2357.已知函数,若等差数列的前项和为,且A.B.0C.2020D.40408.在四面体,二面角的平面角为150°,则四面体ABCD外接球的表面积为A.B.C.D.二、多项选择题(本题共4小题,每小题5分,共20分。在每小题给出的选项中,有多项符合题目要求。全部选对的得5分,部分选对的得3分,有选错的得0分)9.在疫情防控阻击战之外,另一条战线也日渐清晰——恢复经济正常运行.国人万众一心,众志成城,防控疫情、复疫情防控期间某企业复工职工调查工复产,某企业对本企业1644名职工关于复工的态度进行调查,调查结果如图所示,则下列说法正确的是A.B.从该企业中任取一名职工,该职工是倾向于在家办公的概率为0.178C.不到80名职工倾向于继续申请休假D.倾向于复工后在家办公或在公司办公的职工超过986名10.已知向量,下列说法正确的是A.B.向量方向上的投影为C.D.的最大值为211.已知椭圆的右焦点为F,点P在椭圆C上,点Q在圆上,且圆E上的所有点均在椭圆C外,若的最小值为,且椭圆C的长轴长恰与圆E的直径长相等,则下列说法正确的是A.椭圆C的焦距为2B.椭圆C的短轴长为C.的最小值为D.过点F的圆E的切线斜率为12.已知函数,则下列结论中,正确的有A.是的最小正周期B.在上单调递增C.的图象的对称轴为直线D.的值域为三、填空题(本题共4小题,每小题5分,共20分)13.若曲线处的切线与直线平行,则_________.14.已知圆锥的顶点为S,顶点S在底面的射影为O,轴截面SAB是边长为2的等边三角形,则该圆锥的侧面积为__________,点D为母线SB的中点,点C为弧AB的中点,则异面直线CD与OS所成角的正切值为________.15.CES是世界上最大的消费电子技术展,也是全球最大的消费技术产业盛会.2020CES消费电子展于2020年1月7日—10日在美国拉斯维加斯举办.在这次CES消费电子展上,我国某企业发布了全球首款彩色水墨屏阅读手机,惊艳了全场.若该公司从7名员工中选出3名员工负责接待工作(这3名员工的工作视为相同的工作),再选出2名员工分别在上午、下午讲解该款手机性能,若其中甲和乙至多有1人负责接待工作,则不同的安排方案共有__________种.16.已知点分别为双曲线的左、右焦点,点A,B在C的右支上,且点恰好为的外心,若,则C的离心率为__________.四、解答题(本题共6小题,共70分。解答应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)在①;②;③,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.在△ABC中,内角A,B,C所对的边分别为.且满足_________.(1)求sinC;(2)已知的外接圆半径为,求△ABC的边AB上的高.注:如果选择多个条件分别解答,按第一个解答计分.18.(本小题满分12分)已知数列的前项和为,且.(1)求证:数列为等比数列;(2)设,求数列的项和.19....