电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高二数学 圆锥曲线复习 知识精讲 苏教版VIP免费

高二数学 圆锥曲线复习 知识精讲 苏教版_第1页
1/7
高二数学 圆锥曲线复习 知识精讲 苏教版_第2页
2/7
高二数学 圆锥曲线复习 知识精讲 苏教版_第3页
3/7
高二数学圆锥曲线复习知识精讲苏教版【本讲教育信息】一.教学内容:圆锥曲线复习二.教学目标:1.通过小结与复习,能较准确地理解和掌握三种曲线的特点以及它们之间的区别与联系奎屯王新敞新疆2.通过本节教学能较全面地掌握本章所教的各种方法与技巧,尤其是解析几何的基本方法――坐标法;[本周知识要点]一.知识归纳:名称椭圆双曲线图象xOyxOy定义平面内到两定点的距离的和为常数(大于)的动点的轨迹叫椭圆奎屯王新敞新疆即当2﹥2时,轨迹是椭圆,当2=2时,轨迹是一条线段当2﹤2时,轨迹不存在平面内到两定点的距离的差的绝对值为常数(小于)的动点的轨迹叫双曲线奎屯王新敞新疆即当2﹤2时,轨迹是双曲线当2=2时,轨迹是两条射线当2﹥2时,轨迹不存在标准方程焦点在轴上时:焦点在轴上时:注:根据分母的大小来判断焦点在哪一坐标轴上焦点在轴上时:焦点在轴上时:常数的关系,,最大,,最大,可以渐近线焦点在轴上时:焦点在轴上时:抛物线:用心爱心专心图形方程焦点准线(一)椭圆1.椭圆的性质:由椭圆方程(1)范围:,椭圆落在组成的矩形中。(2)对称性:图象关于y轴对称。图象关于x轴对称。图象关于原点对称。原点叫椭圆的对称中心,简称中心。x轴、y轴叫椭圆的对称轴。从椭圆的方程中直接可以看出它的范围,对称的截距。(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点奎屯王新敞新疆椭圆共有四个顶点:,。加两焦点共有六个特殊点。叫椭圆的长轴,叫椭圆的短轴。长分别为。分别为椭圆的长半轴长和短半轴长。椭圆的顶点即为椭圆与对称轴的交点。(4)离心率:椭圆焦距与长轴长之比。。。椭圆形状与的关系:,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在时的特例。椭圆变扁,直至成为极限位置线段,此时也可认为是椭圆在时的特例。2.椭圆的第二定义:一动点到定点的距离和它到一条定直线的距离的比是一个内常数,那么这个点的轨迹叫做椭圆。其中定点叫做焦点,定直线叫做准线,常数就是离心率。椭圆的第二定义与第一定义是等价的,它是椭圆两种不同的定义方式奎屯王新敞新疆3.椭圆的准线方程对于,左准线;右准线对于,下准线;上准线焦点到准线的距离(焦参数)(二)双曲线的几何性质:1.(1)范围、对称性用心爱心专心由标准方程,从横的方向来看,直线x=-a,x=a之间没有图象,从纵的方向来看,随着x的增大,y的绝对值也无限增大,所以曲线在纵方向上可无限伸展,不像椭圆那样是封闭曲线。双曲线不封闭,但仍称其对称中心为双曲线的中心。(2)顶点顶点:,特殊点:实轴:长为2a,a叫做实半轴长。虚轴:长为2b,b叫做虚半轴长。双曲线只有两个顶点,而椭圆则有四个顶点,这是两者的又一差异。(3)渐近线过双曲线的渐近线()(4)离心率双曲线的焦距与实轴长的比,叫做双曲线的离心率奎屯王新敞新疆范围:e>1双曲线形状与e的关系:,e越大,即渐近线的斜率的绝对值就越大,这时双曲线的形状就从扁狭逐渐变得开阔。由此可知,双曲线的离心率越大,它的开口就越阔。2.等轴双曲线定义:实轴和虚轴等长的双曲线叫做等轴双曲线。等轴双曲线的性质:(1)渐近线方程为:;(2)渐近线互相垂直;(3)离心率。3.共渐近线的双曲线系如果已知一双曲线的渐近线方程为,那么此双曲线方程就一定是:或写成。4.共轭双曲线以已知双曲线的实轴为虚轴,虚轴为实轴,这样得到的双曲线称为原双曲线的共轭双曲线区别:三量a,b,c中a,b不同(互换)c相同。共用一对渐近线。双曲线和它的共轭双曲线的焦点在同一圆上。确定双曲线的共轭双曲线的方法:将1变为-1。5.双曲线的第二定义:到定点F的距离与到定直线的距离之比为常数的点的轨迹是双曲线。其中,定点叫做双曲线的焦点,定直线叫做双曲线的准线。常数e是双曲线的离心率。6.双曲线的准线方程:对于来说,相对于左焦点对应着左准线,相对于右焦点对应着右准线;焦点到准线的距离(也叫焦参数)。对于来说,相对于下焦点对应着下准线;相对于上焦点用心爱心专心对应着上准线。(三)抛物线的几何性质(1)范围因为p>0,由方程可知,这条抛物线上的点M的坐标(x,y)满足不等式x≥0,所以这条抛物线在y轴的右侧;当x的值...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高二数学 圆锥曲线复习 知识精讲 苏教版

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部