模块综合测评(B)(时间:120分钟满分:150分)第Ⅰ卷(选择题共50分)一、选择题(本大题共10小题,每小题5分,共50分)1.在极坐标系中,圆ρ=2cosθ的垂直于极轴的两条切线方程分别为()A.θ=0(ρ∈R)和ρcosθ=2B.θ=(ρ∈R)和ρcosθ=2C.θ=(ρ∈R)和ρcosθ=1D.θ=0(ρ∈R)和ρcosθ=1解析:由题意可知,圆ρ=2cosθ可化为普通方程为(x-1)2+y2=1.所以圆的垂直于x轴的两条切线方程分别为x=0和x=2,再将两条切线方程化为极坐标方程分别为θ=(ρ∈R)和ρcosθ=2,故选B.答案:B2.在极坐标系中,圆ρ=-2sinθ的圆心的极坐标是()A.B.C.(1,0)D.(1,π)解析:由题意得,圆的直角坐标方程为x2+(y+1)2=1,圆心直角坐标为(0,-1),即圆心的极坐标为.答案:B3.在极坐标系中,点到圆ρ=2cosθ的圆心的距离为()A.2B.C.D.1解析:圆ρ=2cosθ在直角坐标系中的方程为(x-1)2+y2=1,点的直角坐标为(1,).∴圆心(1,0)与(1,)的距离为d=.答案:D4.极坐标方程(ρ-1)(θ-π)=0(ρ≥0)表示的图形是()A.两个圆B.两条直线C.一个圆和一条射线D.一条直线和一条射线解析:ρ=1表示圆,θ=π表示一条射线.答案:C5.设曲线C的参数方程为(θ为参数),直线l的方程为x-3y+2=0,则曲线C上到直线l距离为的点的个数为()A.1B.2C.3D.4解析:曲线C的标准方程为(x-2)2+(y+1)2=9,它表示以(2,-1)为圆心,半径为3的圆,其中圆心(2,-1)到直线x-3y+2=0的距离d=且3-,故过圆心且与l平行的直线与圆交于两点,满足题意的点即为该两点.答案:B6.直线3x-4y-9=0与圆(θ为参数)的位置关系是()A.相切B.相离C.直线过圆心D.相交但直线不过圆心2解析:圆的参数方程可化为x2+y2=4,可求得该圆的圆心(0,0),半径r=2.显然圆心不在直线上,又由点到直线的距离公式知,圆心到直线的距离d=