1.1.3充分条件和必要条件[A基础达标]1.若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件解析:选A.由x=4知|a|==5;反之,由|a|==5,得x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要条件,故选A.2.若集合A={3,a2},B={2,4},则“a=2”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件C.既是充分条件,又是必要条件D.既不充分也不必要条件解析:选A.若a=2,则A={3,4},可得A∩B={4};若A∩B={4},则a2=4,可得a=±2,所以“a=2”是“A∩B={4}”的充分不必要条件.3.设{an}是公比为q的等比数列,则“q>1”是“{an}为递增数列”的()A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件解析:选D.当数列{an}的首项a1<0时,若q>1,则数列{an}是递减数列;当数列{an}的首项a1<0时,要使数列{an}为递增数列,则0<q<1,所以“q>1”是“{an}为递增数列”的既不充分也不必要条件.4.若a∈R,则“a=2”是“(a-1)(a-2)=0”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分又不必要条件解析:选A.由a=2能得到(a-1)(a-2)=0,但由(a-1)·(a-2)=0得到a=1或a=2,而不是a=2,所以a=2是(a-1)(a-2)=0的充分而不必要条件.5.下面四个条件中,使a>b成立的充分而不必要的条件是()A.a>b+1B.a>b-1C.a2>b2D.a3>b3解析:选A.要求a>b成立的充分不必要条件,必须满足由选项能推出a>b,而由a>b推不出选项.在选项A中,a>b+1能使a>b成立,而a>b时a>b+1不一定成立,故A正确;在选项B中,a>b-1时a>b不一定成立,故B错误;在选项C中,a2>b2时a>b也不一定成立,因为a,b不一定均为正值,故C错误;在选项D中,a3>b3是a>b成立的充要条件,故D也错误.6.不等式x2-3x+2<0成立的充要条件是________.解析:x2-3x+2<0⇔(x-1)(x-2)<0⇔1b恒成立的实数b的取值范围.解:由于p:x2-2x-3<0⇔-10).依题意,得{x|-10),所以解得a>2,则使a>b恒成立的实数b的取值范围是b≤2,即(-∞,2].[B能力提升]11.对于二次函数f(x)=ax2+bx+c(a≠0),下列结论正确的是()①Δ=b2-4ac≥0是函数f(x)有零点的充要条件;②Δ=b2-4ac=0是函数f(x)有零点的充分条件;③Δ=b2-4ac>0是函数f(x)有零点的必要条件;④Δ=b2-4ac<0是函数f(x)没有零点的充要条件.A.①④B.①②③C.①②③④D.①②④解析:选D.①Δ=b2-4ac≥0⇔方程ax2+bx+c=0(a≠0)有实根⇔f(x)=ax2+bx+c(a≠0)有零点,故①正确.②若Δ=b2-4ac=0,则方程ax2+bx+c=0(a≠0)有实根,因此函数f(x)=ax2+bx+c(a≠0)有零点,故②正确.③函数f(x)=ax2+bx+c(a≠0)有零点时,方程ax2+bx+c=0(a≠0)有实根,未必有Δ=b2-4ac>0,也可能有Δ=0,故③错误.④Δ=b2-4ac<0⇔方程ax2+bx+c=0(a≠0)无实根⇔函数f(x)=ax2+bx+c(a≠0)无零点,故④正确.12.下列各题中,p是q的充要条件的是______________.(填序号)①p:m<-2或m>6,q:y=x2+mx+m+3有两个不同的零点;②p:=1...