课时跟踪检测(二十五)事件的独立性[课下梯度提能]一、基本能力达标1.袋内有3个白球和2个黑球,从中不放回地摸球,用A表示“第一次摸得白球”,用B表示“第二次摸得白球”,则A与B是()A.互斥事件B.相互独立事件C.对立事件D.不相互独立事件解析:选D根据互斥事件、对立事件和相互独立事件的定义可知,A与B不是相互独立事件.2.两个实习生每人加工一个零件,加工为一等品的概率分别为和,两个零件是否加工为一等品相互独立,则这两个零件中恰有一个一等品的概率为()A.B.C.D.解析:选B设“两个零件中恰有一个一等品”为事件A,因事件相互独立,所以P(A)=×+×=.3.某电视台夏日水上闯关节目中的前三关的过关率分别为0.8,0.6,0.5,只有通过前一关才能进入下一关,且通过每关相互独立,一选手参加该节目,则该选手只闯过前两关的概率为()A.0.48B.0.4C.0.32D.0.24解析:选D由题意可知只闯过前两关,则第三关没闯过,由相互独立事件的概率可知P=0.8×0.6×(1-0.5)=0.24,故该选手只闯过前两关的概率为0.24,故答案为D.4.设两个独立事件A和B都不发生的概率为,A发生B不发生的概率与B发生A不发生的概率相同,则事件A发生的概率P(A)是()A.B.C.D.解析:选D由P(A)=P(B)得P(A)P()=P(B)·P(),即P(A)[1-P(B)]=P(B)[1-P(A)],∴P(A)=P(B).又P()=,∴P()=P()=.∴P(A)=.5.如图所示,在两个圆盘中,指针落在本圆盘每个数所在区域的机会均等,那么两个指针同时落在奇数所在区域的概率是()A.B.C.D.解析:选A设A表示“第一个圆盘的指针落在奇数所在的区域”,则P(A)=,B表示“第二个圆盘的指针落在奇数所在的区域”,则P(B)=.故P(AB)=P(A)·P(B)=×=.6.有一批书共100本,其中文科书40本,理科书60本,按装潢可分精装、平装两种,精装书70本,某人从这100本书中任取一书,恰是文科书,放回后再任取1本,恰是精装书,这一事件的概率是________.解析:设“任取一书是文科书”的事件为A,“任取一书是精装书”的事件为B,则A,B1是相互独立的事件,所求概率为P(AB).据题意可知P(A)==,P(B)==,故P(AB)=P(A)P(B)=×=.答案:7.甲、乙两队进行排球决赛,现在的情形是甲队只要再赢一局就获冠军,乙队需要再赢两局才能得冠军.若两队胜每局的概率相同,则甲队获得冠军的概率为________.解析:问题等价为两类:第一类,第一局甲赢,其概率P1=;第二类,需比赛2局,第一局甲负,第二局甲赢,其概率P2=×=.故甲队获得冠军的概率为P1+P2=.答案:8.一项“过关游戏”规则规定:在第n关要抛掷一颗骰子n次,如果这n次抛掷所出现的点数之和大于n2,则算过关,那么,连过前两关的概率是________.解析:设过第一关为事件A,当抛掷一次出现的点数为2,3,4,5,6点中之一时,通过第一关,所以P(A)=.设过第二关为事件B,记两次骰子出现的点数为(x,y),共有36种情况,第二关不能过有如下6种情况(1,1),(1,2),(1,3),(2,1),(2,2),(3,1).P(B)=1-P()=1-=.所以连过前两关的概率为:P(A)P(B)=.答案:9.设甲、乙、丙三台机器是否需要照顾相互之间没有影响.已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.(1)求甲、乙、丙每台机器在这个小时内需要照顾的概率分别是多少?(2)计算这个小时内至少有一台机器需要照顾的概率.解:记“机器甲需要照顾”为事件A,“机器乙需要照顾”为事件B,“机器丙需要照顾”为事件C.由题意,各台机器是否需要照顾相互之间没有影响,因此,A,B,C是相互独立事件.(1)由已知得P(AB)=P(A)P(B)=0.05,P(AC)=P(A)P(C)=0.1,P(BC)=P(B)P(C)=0.125.解得P(A)=0.2,P(B)=0.25,P(C)=0.5.所以甲、乙、丙每台机器需要照顾的概率分别为0.2,0.25,0.5.(2)记A的对立事件为,B的对立事件为,C的对立事件为,“这个小时内至少有一台机器需要照顾”为事件D,则P()=0.8,P()=0.75,P()=0.5,于是P(D)=1-P()=1-P()P()P()=0.7.所以这个小时内至少有一台机器需要照顾的概率为0.7.10.据统计,某食品企业在一个月内被消费者投诉次数为0,1,2的概率分别为0.4,0.5,0.1.(1)求该企...