【课堂新坐标】2016-2017学年高中数学第三章数系的扩充与复数的引入3.2.1复数的加减与乘法运算学业分层测评苏教版选修2-2(建议用时:45分钟)学业达标]一、填空题1.已知i是虚数单位,则(-1+i)(2-i)=________.【解析】(-1+i)(2-i)=-2+3i-i2=-1+3i.【答案】-1+3i2.复数z=1+i,为z的共轭复数,则z·-z-1=________.【导学号:01580063】【解析】∵z=1+i,∴=1-i,∴z·=(1+i)(1-i)=2,∴z·-z-1=2-(1+i)-1=-i.【答案】-i3.设复数z1=x+2i,z2=3-yi(x,y∈R),若z1+z2=5-6i,则z1-z2=________.【解析】∵z1+z2=x+2i+(3-yi)=(x+3)+(2-y)i,∴(x+3)+(2-y)i=5-6i(x,y∈R),由复数相等定义,得x=2且y=8,∴z1-z2=2+2i-(3-8i)=-1+10i.【答案】-1+10i4.复数z=i(i+1)(i为虚数单位)的共轭复数是________.【解析】∵z=i(i+1)=i2+i=-1+i,∴=-1-i.【答案】-1-i5.复数z=-ai,a∈R,且z2=-i,则a的值为_____________.【解析】∵z2=2=-ai,∴-ai=-i;(a∈R),∴∴a=.【答案】6.(2016·苏北四市质检)设复数z1=2-i,z2=m+i(m∈R,i为虚数单位),若z1·z2为实数,则m的值为________.【解析】z1·z2=(2-i)(m+i)=(2m+1)+(2-m)i.∵z1·z2是实数,∴m=2.【答案】27.(2016·南京盐城一模)若复数z=(1+i)(3-ai)(i为虚数单位)为纯虚数,则实数a=________.【解析】(1+i)(3-ai)=(a+3)+(3-a)i,∵z为纯虚数,∴a=-3.【答案】-38.设复数z1=1+i,z2=x+2i(x∈R),若z1z2∈R,则x等于________.【解析】∵z1=1+i,z2=x+2i(x∈R),∴z1z2=(1+i)(x+2i)=(x-2)+(x+2)i.∵z1z2∈R,∴x+2=0,即x=-2.【答案】-21二、解答题9.计算:(1)(1+i)(1-i)+(-1+i);(2)(1+i).【解】(1)原式=1-i2+(-1)+i=1+i.(2)原式=(1+i)=(1+i)=--i+i-=-+i.10.已知复数z=(1-i)2+1+3i,若z2+az+b=1-i(a,b∈R),求b+ai的共轭复数.【导学号:01580064】【解】z=(1-i)2+1+3i=-2i+1+3i=1+i,由z2+az+b=1-i,得(1+i)2+a(1+i)+b=1-i,∴a+b+i(a+2)=1-i(a,b∈R),∴解之得则b+ai=4-3i则b+ai的共轭复数是4+3i.能力提升]1.(2014·江苏高考)已知复数z=(5+2i)2(i为虚数单位),则z的实部为________.【解析】z=(5+2i)2=21+20i,故z的实部为21.【答案】212.已知z1=3+4i,z2=t+i,且z1·2是实数,则实数t=________.【解析】2=t-i,z1·2=(3+4i)(t-i)=(3t+4)+(4t-3)i是实数,∴4t-3=0,∴t=.【答案】3.已知-1+i是关于x的方程x2+px+q=0的一个根,则复数z=p+qi(p,q∈R)等于________.【解析】(-1+i)2+p(-1+i)+q=0,整理得(q-p)+(p-2)i=0,∴∴p=q=2.故z=p+qi=2+2i.【答案】2+2i4.已知z1=(3x+y)+(y-4x)i(x,y∈R),z2=(4y-2x)-(5x+3y)i(x,y∈R).设z=z1-z2,且z=13-2i,则z1=__________,z2=__________.【解析】z=z1-z2=-=(5x-3y)+(x+4y)i=13-2i,∴解得∴z1=5-9i,z2=-8-7i.【答案】5-9i-8-7i5.是z的共轭复数.若z+=2,(z-)i=2(i为虚数单位),求z.【解】设z=a+bi(a,b∈R),则=a-bi,2∵z+=2a=2,∴a=1.又(z-)i=2bi2=-2b=2.∴b=-1.故z=1-i.3