电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 计数原理的综合应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题VIP免费

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 计数原理的综合应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第1页
1/4
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 计数原理的综合应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第2页
2/4
高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 计数原理的综合应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题_第3页
3/4
第2课时计数原理的综合应用[A基础达标]1.三人踢毽子,互相传递,每人每次只能踢一下.由甲开始踢,经过4次传递后,毽子又被踢回甲,则不同的传递方式共有()A.4种B.5种C.6种D.12种解析:选C.若甲先传给乙,则有甲→乙→甲→乙→甲,甲→乙→甲→丙→甲,甲→乙→丙→乙→甲3种不同的传法;同理,甲先传给丙也有3种不同的传法,故共有6种不同的传法.2.把3封信投到4个信箱,所有可能的投法共有()A.24种B.4种C.43种D.34种解析:选C.第1封信投到信箱中有4种投法;第2封信投到信箱中也有4种投法;第3封信投到信箱中也有4种投法,只要把这3封信投完,就做完了这件事情,由分步乘法计数原理可得共有43种方法.3.在由0,1,2,3,4,5所组成的没有重复数字的四位数中,能被5整除的有()A.512个B.192个C.240个D.108个解析:选D.能被5整除的四位数,可分为两类:一类是末位为0,由分步乘法计数原理,共有5×4×3=60个;另一类是末位为5,由分步乘法计数原理共有4×4×3=48个.由分类加法计数原理得所求的四位数共有60+48=108(个).4.从1,2,3,4,5,6,7,8,9这9个数字中任取两个,其中一个作为底数,另一个作为真数,则可以得到不同对数值的个数为()A.64B.56C.53D.51解析:选C.由于1只能作为真数,则以1为真数,从其余各数中任取一数为底数,对数值均为0.从除1外的其余各数中任取两数分别作为对数的底数和真数,共能组成8×7=56(个)对数式,其中,log24=log39,log42=log93,log23=log49,log32=log94,重复了4次,所以得到不同对数值的个数为1+56-4=53.故选C.5.有6种不同的颜色,给图中的6个区域涂色,要求相邻区域不同色,则不同的涂色方法共有()A.4320种B.2880种C.1440种D.720种解析:选A.第1个区域有6种不同的涂色方法,第2个区域有5种不同的涂色方法,第3个区域有4种不同的涂色方法,第4个区域有3种不同的涂色方法,第5个区域有4种不同的涂色方法,第6个区域有3种不同的涂色方法,根据分步乘法计数原理,共有6×5×4×3×4×3=4320(种)不同的涂色方法.6.甲、乙、丙3个班各有3,5,2名三好学生,现准备推选2名来自不同班的三好学生去参加校三好学生代表大会,共有________种推选方法.1解析:分为三类:①甲班选1名,乙班选1名,根据分步乘法计数原理,有3×5=15(种)选法;②甲班选1名,丙班选1名,根据分步乘法计数原理,有3×2=6(种)选法;③乙班选1名,丙班选1名,根据分步乘法计数原理,有5×2=10(种)选法.综上,根据分类加法计数原理,共有15+6+10=31(种)推选方法.答案:317.从1到200的自然数中,各个数位上都不含有数字8的自然数有________个.解:第一类:一位数中除8外符合要求的有8个;第二类:两位数中,十位上数字除0和8外有8种情况,而个位数字除8外,有9种情况,有8×9个符合要求;第三类:三位数中,百位上数字是1的,十位和个位上数字除8外均有9种情况,有9×9个,而百位上数字是2的只有200符合.所以总共有8+8×9+9×9+1=162(个).答案:1628.有三项体育运动项目,每个项目均设冠军和亚军各一名奖项.(1)学生甲参加了这三个运动项目,但只获得一个奖项,学生甲获奖的不同情况有多少种(2)有4名学生参加了这三个运动项目,若一个学生可以获得多项冠军,那么各项冠军获得者的不同情况有多少种?解:(1)三个运动项目,共有六个奖项,由于甲获得一个奖项且甲可获得六个奖项中的任何一个,所以甲有6种不同的获奖情况.(2)每一项体育运动项目中冠军的归属都有4种不同的情况,故各项冠军获得者的不同情况有4×4×4=64(种).9.把1,2,3,4,5这五个数字组成无重复数字的五位数,并把它们按由小到大的顺序排列成一个数列.(1)43251是这个数列的第几项?(2)这个数列的第96项是多少?解:将由1,2,3,4,5这五个数字组成无重复数字的五位数按万位数字分类,共五类,每类组成的数字数为4×3×2×1=24个.(1)万位数字为4,且比43251小的数的个数有3×2×1+3×2×1+2+1=15个,所以43251是这个数列的第3×24+15+1=88项.(2)因为96=4×24,所以这个数列的第96项是45321.[B能力提升]10.(2019·平顶山高二检测)将字母a,a,b,b,c,c...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第一章 计数原理 1.1 分类加法计数原理与分步乘法计数原理 第2课时 计数原理的综合应用练习(含解析)新人教A版选修2-3-新人教A版高二选修2-3数学试题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部