预习课本P107~108,思考并完成下列问题(1)复数的加法、减法如何进行?复数加法、减法的几何意义如何?(2)复数的加、减法与向量间的加减运算是否相同?3.2.1复数代数形式的加、减运算及其几何意义[新知初探]1.复数的加、减法法则设z1=a+bi,z2=c+di(a,b,c,d∈R),则z1+z2=,z1-z2=.2.复数加法运算律设z1,z2,z3∈C,有z1+z2=,(z1+z2)+z3=.(a+c)+(b+d)i(a-c)+(b-d)iz2+z1z1+(z2+z3)3.复数加、减法的几何意义设复数z1,z2对应的向量为OZ1―→,OZ2―→,则复数z1+z2是以OZ1―→,OZ2―→为邻边的平行四边形的所对应的复数,z1-z2是连接向量OZ1―→与OZ2―→的终点并指向所对应的复数.对角线OZ―→OZ1―→的向量[点睛]对复数加、减法几何意义的理解它包含两个方面:一方面是利用几何意义可以把几何图形的变换转化为复数运算去处理,另一方面对于一些复数的运算也可以给予几何解释,使复数作为工具运用于几何之中.[小试身手]1.判断(正确的打“√”,错误的打“×”)(1)复数与向量一一对应.()(2)复数与复数相加减后结果只能是实数.()(3)因为虚数不能比较大小,所以虚数的模也不能比较大小.()×××2.已知复数z1=3+4i,z2=3-4i,则z1+z2等于()A.8iB.6C.6+8iD.6-8i答案:B3.已知复数z满足z+i-3=3-i,则z等于()A.0B.2iC.6D.6-2i答案:D4.在复平面内,复数1+i与1+3i分别对应向量OA�和OB�,其中O为坐标原点,则|AB�|等于()A.2B.2C.10D.4答案:B[典例](1)计算:(2-3i)+(-4+2i)=________.(2)已知z1=(3x-4y)+(y-2x)i,z2=(-2x+y)+(x-3y)i,x,y为实数,若z1-z2=5-3i,则|z1+z2|=________.[解析](1)(2-3i)+(-4+2i)=(2-4)+(-3+2)i=-2-i.(2)z1-z2=[(3x-4y)+(y-2x)i]-[(-2x+y)+(x-3y)i]=[(3x-4y)-(-2x+y)]+[(y-2x)-(x-3y)]i=(5x-5y)+(-3x+4y)i=5-3i,复数代数形式的加、减运算所以5x-5y=5,-3x+4y=-3,解得x=1,y=0,所以z1=3-2i,z2=-2+i,则z1+z2=1-i,所以|z1+z2|=2.[答案](1)-2-i(2)2复数代数形式的加、减法运算技巧(1)复数代数形式的加、减法运算实质就是将实部与实部相加减,虚部与虚部相加减之后分别作为结果的实部与虚部,因此要准确地提取复数的实部与虚部.(2)算式中若出现字母,首先确定其是否为实数,再确定复数的实部与虚部,最后把实部与实部、虚部与虚部分别相加减.(3)复数的运算可以类比多项式的运算:若有括号,括号优先;若无括号,可以从左到右依次进行计算.[活学活用]已知复数z1=a2-3-i,z2=-2a+a2i,若z1+z2是纯虚数,则实数a=________.解析:由条件知z1+z2=a2-2a-3+(a2-1)i,又z1+z2是纯虚数,所以a2-2a-3=0,a2-1≠0,解得a=3.答案:3[典例]如图所示,平行四边形OABC的顶点O,A,C分别表示0,3+2i,-2+4i.求:(1)AO―→表示的复数;(2)对角线CA―→表示的复数;(3)对角线OB―→表示的复数.复数加减运算的几何意义[解](1)因为AO―→=-OA―→,所以AO―→表示的复数为-3-2i.(2)因为CA―→=OA―→-OC―→,所以对角线CA―→表示的复数为(3+2i)-(-2+4i)=5-2i.(3)因为对角线OB―→=OA―→+OC―→,所以对角线OB―→表示的复数为(3+2i)+(-2+4i)=1+6i.复数与向量的对应关系的两个关注点(1)复数z=a+bi(a,b∈R)是与以原点为起点,Z(a,b)为终点的向量一一对应的.(2)一个向量可以平移,其对应的复数不变,但是其起点与终点所对应的复数可能改变.[活学活用]复平面内三点A,B,C,A点对应的复数为2+i,向量BA―→对应的复数为1+2i,向量BC―→对应的复数为3-i,求点C对应的复数.解: BA―→对应的复数为1+2i,BC―→对应的复数为3-i.∴AC―→=BC―→-BA―→对应的复数为(3-i)-(1+2i)=2-3i.又 OC―→=OA―→+AC―→,∴C点对应的复数为(2+i)+(2-3i)=4-2i.[典例](1)如果复数z满足|z+i|+|z-i|=2,那么|z+i+1|的最小值是()A.1B.12C.2D.5(2)若复数z满足|z+3+i|≤1,求|z|的最大值和最小值.复数模的最值问题[解析](1)设复数-...