电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 应用举例课件 新人教A版必修5 课件VIP免费

高中数学 应用举例课件 新人教A版必修5 课件_第1页
1/35
高中数学 应用举例课件 新人教A版必修5 课件_第2页
2/35
高中数学 应用举例课件 新人教A版必修5 课件_第3页
3/35
1.2.11.2.1应用举例应用举例基础知识复习1、正弦定理2、余弦定理2222222222cos2cos2cosabcbcAbacacBcababC2sinsinsin()abcRABCR其中为外接圆的半径1、分析:理解题意,画出示意图2、建模:把已知量与求解量集中在一个三角形中3、求解:运用正弦定理和余弦定理,有顺序地解这些三角形,求得数学模型的解。4、检验:检验所求的解是否符合实际意义,从而得出实际问题的解。实际问题→数学问题(三角形)→数学问题的解(解三角形)→实际问题的解解斜三角形应用题的一般步骤是::多应用实际测量中有许正弦定理和余弦定理在(1)测量距离.(2)测量高度..)3(测量角度解斜三角形中的有关名词、术语:–(1)坡度:斜面与地平面所成的角度。–(2)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,视线在水平线下方的角叫俯角。–(3)方位角:从正北方向顺时针转到目标方向的夹角。–(4)视角:由物体两端射出的两条光线在眼球内交叉而成的角:多应用实际测量中有许正弦定理和余弦定理在(1)测量距离.例1.设A、B两点在河的两岸,要测量两点之间的距离。测量者在A的同测,在所在的河岸边选定一点C,测出AC的距离是55cm,∠BAC=51o,∠ACB=75o,求A、B两点间的距离(精确到0.1m)分析:已知两角一边,可以用正弦定理解三角形sinsinABACCB=解:根据正弦定理,得答:A,B两点间的距离为65.7米。sinsinsin55sinsinsin55sin7555sin7565.7()sin(1805175)sin54ABACACBABCACACBACBABABCABCm变式练习:两灯塔A、B与海洋观察站C的距离都等于akm,灯塔A在观察站C的北偏东30,灯塔B在观察站C南偏东60,则A、B之间的距离为多少?例2.A、B两点都在河的对岸(不可到达),设计一种测量两点间的距离的方法。分析:用例1的方法,可以计算出河的这一岸的一点C到对岸两点的距离,再测出∠BCA的大小,借助于余弦定理可以计算出A、B两点间的距离。解:测量者可以在河岸边选定两点C、D,测得CD=a,并且在C、D两点分别测得∠BCA=α,ACD=∠β,CD∠B=γ,BDA=∠δ.在ADC和BDC中,应用正弦定理得计算出AC和BC后,再在ABC中,应用余弦定理计算出AB两点间的距离sin()sin()sin()sin180()sinsinsin()sin180()aaACaaBC222cosABACBCACBC变式训练:若在河岸选取相距40米的C、D两点,测得BCA=,ACD=,CDB=,BDA=60304560求A、B两点间距离.注:阅读教材P12,了解基线的概念练习1.一艘船以32.2nmile/hr的速度向正北航行。在A处看灯塔S在船的北偏东20o的方向,30min后航行到B处,在B处看灯塔在船的北偏东65o的方向,已知距离此灯塔6.5nmile以外的海区为航行安全区域,这艘船可以继续沿正北方向航行吗?11545sin2016.1sin207.787()sin45sin45,sin657.06()6.5ASBSBASABSBnmileSABhhSBnmilehnmile解:在中,=,,由正弦定理得设点到直线的距离为则此船可以继续沿正北方向航行答:此船可以继续沿正北方向航行练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20’,AC长为1.40m,计算BC的长(精确到0.01m).(1)什么是最大仰角?最大角度最大角度最大角度最大角度(2)例题中涉及一个怎样的三角形?在△ABC中已知什么,要求什么?CAB练习2.自动卸货汽车的车厢采用液压机构。设计时需要计算油泵顶杆BC的长度.已知车厢的最大仰角是60°,油泵顶点B与车厢支点A之间的距离为1.95m,AB与水平线之间的夹角为6°20’,AC长为1.40m,计算BC的长(精确到0.01m).最大角度最大角度最大角度最大角度已知△ABC中AB=1.95m,AC=1.40m,夹角∠CAB=66°20′,求BC.解:由余弦定理,得答:顶杆BC约长1.89m。CAB222222cos1.951.4021.951.40cos66203.5711.89(m)BCABACABACABC:多应用实际测量中有许正弦定理和余弦定理在(2)测量...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 应用举例课件 新人教A版必修5 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部