§1.2命题及其关系、充分条件与必要条件基础知识自主学习要点梳理1.命题的概念在数学中用语言、符号或式子表达的,可以的陈述句叫做命题.其中的语句叫真命题,的语句叫假命题.判断真假判断为真判断为假2.四种命题及其关系(1)四种命题命题表述形式原命题若p,则q逆命题否命题逆否命题若q,则p若綈p,则綈q若綈q,则綈p(2)四种命题间的逆否关系(3)四种命题的真假关系①两个命题互为逆否命题,它们有的真假性;②两个命题互为逆命题或互为否命题,它们的真假性.没有关系相同逆命题逆否命题否命题3.充分条件与必要条件(1)如果p⇒q,则p是q的,q是p的;(2)如果p⇒q,q⇒p,则p是q的.充分条件必要条件充要条件[难点正本疑点清源]1.用集合的观点,看充要条件设集合A={x|x满足条件p},B={x|x满足条件q},则有:(1)若A⊆B,则p是q的充分条件,若AB,则p是q的充分不必要条件;(2)若B⊆A,则p是q的必要条件,若BA,则p是q的必要不充分条件;(3)若A=B,则p是q的充要条件;(4)若AB,且BA,则p是q的既不充分也不必要条件.2.从逆否命题,谈等价转换由于互为逆否命题的两个命题具有相同的真假性,因而,当判断原命题的真假比较困难时,可转化为判断它的逆否命题的真假.这就是常说的“正难则反”.基础自测1.下列命题中所有真命题的序号是________.①“a>b”是“a2>b2”的充分条件;②“|a|>|b|”是“a2>b2”的必要条件;③“a>b”是“a+c>b+c”的充要条件.解析①由2>-3⇒22>(-3)2知,该命题为假;②a2>b2⇒|a|2>|b|2⇒|a|>|b|,该命题为真;③a>b⇒a+c>b+c,又a+c>b+c⇒a>b;∴“a>b”是“a+c>b+c”的充要条件为真命题.②③2.下列命题:①“全等三角形的面积相等”的逆命题;②“若ab=0,则a=0”的否命题;③“正三角形的三个角均为60°”的逆否命题,其中真命题的序号是________(把所有真命题的序号填在横线上).解析①“全等三角形的面积相等”的逆命题为“面积相等的三角形全等”,显然该命题为假命题;②“若ab=0,则a=0”的否命题为“若ab≠0,则a≠0”,而由ab≠0可得a,b都不为零,故a≠0,所以该命题是真命题;③由于原命题“正三角形的三个角均为60°”是一个真命题,故其逆否命题也是真命题.故填②③.②③3.已知a,b是实数,则“a>0且b>0”是“a+b>0且ab>0”的____________条件.解析对于“a>0且b>0”可以推出“a+b>0且ab>0”,反之也是成立的.充分必要4.(2010·福建)若向量a=(x,3)(x∈R),则“x=4”是“|a|=5”的()A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件解析由x=4知|a|=42+32=5;反之,由|a|=x2+32=5,得x=4或x=-4.故“x=4”是“|a|=5”的充分而不必要条件,故选A.A5.若集合A={1,m2},B={2,4},则“m=2”是“A∩B={4}”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件解析由“m=2”可知A={1,4},B={2,4},所以可以推得A∩B={4},反之,若“A∩B={4}”可以推得m2=4,解得m=2或-2,不能推得m=2,所以“m=2”是“A∩B={4}”的充分不必要条件.A题型分类深度剖析题型一四种命题及其关系例1设原命题是“当c>0时,若a>b,则ac>bc”,写出它的逆命题、否命题与逆否命题,并分别判断它们的真假.思维启迪先分清原命题的大前提,命题的条件和结论;再写其他命题.解“当c>0时”是大前提,写其他命题时应该保留,原命题的条件是a>b,结论是ac>bc.因此它的逆命题:当c>0时,若ac>bc,则a>b.它是真命题;否命题:当c>0时,若a≤b,则ac≤bc.它是真命题;逆否命题:当c>0时,若ac≤bc,则a≤b.它是真命题.探究提高在判断四个命题之间的关系时,首先要分清命题的条件与结论,再比较每个命题的条件与结论之间的关系,要注意四种命题关系的相对性,一旦一个命题定为原命题,也就相应的有了它的“逆命题”、“否命题”、“逆否命题”;要判定命题为假命题时只需举反例;对涉及数学概念的命题的判定要从概念本身入手.变式训练1若a、b、c∈R,写出命题“若ac<0,则ax2+bx+c=0有两个不相等的实数根”的逆命题、否命题、逆否命题,并判断这三个命题的真...