3.1.2随机现象在自然界和现实生活中,一些事物都是相互联系和不断发展的。在它们彼此间的联系和发展中,根据它们是否有必然的因果联系,可以分成截然不同的两大类:一类是确定性的现象。这类现象是在一定条件下,必定会导致某种确定的结果。举例来说,在标准大气压下,水加热到100摄氏度,就必然会沸腾。事物间的这种联系是属于必然性的。另一类是不确定性的现象。这类现象是在一定条件下,它的结果是不确定的。举例来说,同一个工人在同一台机床上加工同一种零件若干个,它们的尺寸总会有一点差异。又如,在同样条件下,进行小麦品种的人工催芽试验,各棵种子的发芽情况也不尽相同,有强弱和早晚的分别等等。为什么在相同的情况下,会出现这种不确定的结果呢?这是因为,我们说的“相同条件”是指一些主要条件来说的,除了这些主要条件外,还会有许多次要条件和偶然因素又是人们无法事先一一能够掌握的。正因为这样,我们在这一类现象中,就无法用必然性的因果关系,对个别现象的结果事先做出确定的答案。事物间的这种关系是属于偶然性的,这种现象叫做偶然现象,或者叫做随机现象。例1.我们通常把硬币上刻有国徽的一面称为正面,现在任意抛一枚质地均匀的硬币,那么可能出现“正面向上”,也可能出现“反面向上”。究竟得到哪一种结果,不可能事先确定,这是一种随机现象。例2.一名中学生在篮球场的罚球线练习投篮,对于每次投篮,他可能投进,也可能投不进。即使他打篮球的技术很好,我们最多说,他投进的可能性很大,并不能保证每投必进。这也是一种随机现象。例3.在城市中,当我们走到装有交通信号灯的十字路口时,可能遇到绿灯,也可能遇到红灯和黄灯,一般来说,行人在十字路口看到的交通信号灯颜色,可以认为是一种随机现象。例4.在10个同类产品中,有8个正品、2个次品.从中任意抽出3个检验,那么“抽到3个正品”、“抽到2个产品”、“抽到1个产品”三种结果都有可能发生,至于出现哪一种结果,由于是任意抽取,抽取前无法预料,这也是一种随机现象。为了探索随机现象的规律性,需要对随机现象进行观察。我们把观察随机现象或为了某种目的而进行的实验统称为试验。把观察的结果或实验的结果称为试验的结果.为了讨论问题方便,在本章中,我们赋予“试验”这一词较广泛的含义。例如,掷一次骰子、打一次靶、参加一次考试、做一次化学实验等等,都是一次试验。一个试验满足下述条件:(1)试验可以在相同的情形下重复进行;(2)试验的所有结果是明确可知的,但不止一个;(3)每次试验总是出现这些结果中的一个,但在一次试验之前却不能确定这次试验会出现哪一个结果。1.判断以下现象是否为随机现象:(1)某路口单位时间内通过“红旗”牌轿车的辆数;(2)n边形的内角和为(n-2)·180°;(3)某同学竞选学生会主席成功的可能性;(4)一名篮球运动员每场比赛所得的分数.解:(1)、(3)、(4)为随机现象,(2)不是随机现象.练习题:2.下列随机现象中,一次试验各指什么?它们各有几次试验?(1)一天中,从北京开往沈阳的7列列车,全都正点到达;(2)抛10次质地均匀的硬币,硬币落地时有5次正面向上;解:(1)一列列车开出,就是一次试验,共有7次试验;(2)抛一次硬币,就是一次试验。共有10次试验。3.1.2事件与基本事件空间一、随机事件当我们在同样的条件下重复进行试验时,有的结果始终不发生,则称为不可能事件;有的结果在每次试验中一定发生,则称为必然事件;在试验中可能发生,也可能不发生的结果称为随机事件。随机事件通常用大写英文字母A、B、C、…来表示,随机事件可以简称为事件,有时讲到事件也包括不可能事件和必然事件。如何理解随机事件?随机事件可作如下理解:①在相同条件下观察同一现象;②多次观察;③每一次观察的结果不一定相同,且无法预测下一次的结果是什么。随机事件是指在一定条件下可能发生也可能不发生的事件。应注意的是事件的结果是相对于“一定条件”而言的。因此,要弄清某一随机事件,必须明确何为事件发生的条件,何为在此条件下产生的结果。例1.指出下列事件是必然事件、不可能事件还是随机事件:(1)某体操运动员将在某次运...