电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 36指数函数 幂函数 对数函数增长的比较课件 北师大版必修1 课件VIP免费

高中数学 36指数函数 幂函数 对数函数增长的比较课件 北师大版必修1 课件_第1页
1/19
高中数学 36指数函数 幂函数 对数函数增长的比较课件 北师大版必修1 课件_第2页
2/19
高中数学 36指数函数 幂函数 对数函数增长的比较课件 北师大版必修1 课件_第3页
3/19
nyxxyalogayx例题:例1、假设你有一笔资金用于投资,现有三种投资方案供你选择,这三种方案的回报如下:方案一:每天回报40元;方案二:第一天回报10元,以后每天比前一天多回报10元;方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。请问,你会选择哪种投资方案呢?投资方案选择原则:(1)比较三种方案每天回报量哪个方案在某段时间内的总回报量最多,我们就在那段时间选择该方案。(2)比较三种方案一段时间内的总回报量投入资金相同,回报量多者为优解:设第x天所得回报为y元,则方案二:第一天回报10元,以后每天比前一天多回报10元;y=10x(xN*)∈方案三:第一天回报0.4元,以后每天的回报比前一天翻一番。y=0.4×2x-1(xN*)∈方案一:每天回报40元;y=40(xN*)∈三种方案的回报情况x/天方案一方案二方案三y/元增长量/元y/元增长量/元y/元增长量/元1400100.4240020100.80.4340030101.60.8440040103.21.6540050106.43.26400601012.86.47400701025.612.88400801051.225.694009010102.451.2…………………3040030010214748364.8107374182.4图112-1从每天的回报量来看:第1~4天,方案一最多:每5~8天,方案二最多:第9天以后,方案三最多;有人认为投资1~4天选择方案一;5~8天选择方案二;9天以后选择方案三?画图累积回报表天数方案1234567891011一4080120160200240280320360400440二103060100150210280360450550660三0.41.22.8612.425.250.8102204.4409.2816.8结论投资1~6天,应选择第一种投资方案;投资7天,应选择第一或二种投资方案;投资8~10天,应选择第二种投资方案;投资11天(含11天)以上,应选择第三种投资方案。问题提出1.指数函数y=ax(a>1),对数函数y=logax(a>1)和幂函数y=xn(n>0)在区间(0,+∞)上的单调性如何?2.利用这三类函数模型解决实际问题,其增长速度是有差异的,我们怎样认识这种差异呢?探究(一):特殊幂、指、对函数模型的差异对于函数模型:y=2x,y=x2,y=log2x其中x>0.y=log2xy=x2y=2xx思考1:观察三个函数的自变量与函数值对应表,这三个函数增长的快慢情况如何?…1.7661.5851.3791.1380.8480.4850-0.737…11.5696.764.843.241.9610.36…10.55686.0634.5953.4822.63921.516…3.43.02.62.21.81.410.6y=2xy=x2y=log2xx012345678y=2x1248163264128256y=x201491625364964思考2:对于函数模型y=2x和y=x2,观察下列自变量与函数值对应表:当x>0时,你估计函数y=2x和y=x2的图象共有几个交点?思考3:在同一坐标系中这三个函数图象的相对位置关系如何?请画出其大致图象.xyo1124y=2xy=x2y=log2x思考4:根据图象,不等式log2x<2x1和n>0,在区间(0,+∞)上ax是否恒大于xn?ax是否恒小于xn?思考2:当a>1,n>0时,在区间(0,+∞)上,ax与xn的大小关系应如何阐述?思考3:一般地,指数函数y=ax(a>1)和幂函数y=xn(n>0)在区间(0,+∞)上,其增长的快慢情况是如何变化的?思考4:对任意给定的a>1和n>0,在区间(0,+∞)上,logax是否恒大于xn?logax是否恒小于xn?思考5:随着x的增大,logax增长速度的快慢程度如何变化?xn增长速度的快慢程度如何变化?思考6:当x充分大时,logax(a>1)与xn(n>0)谁的增长速度相对较快?思考7:一般地,对数函数y=logax(a>1)和幂函数y=xn(n>0)在区间(0,+∞)上,其增长的快慢情况是如何变化的?xyo1y=logaxy=xn思考8:对于指数函数y=ax(a>1),对数函数y=logax(a>1)和幂函数y=xn(n>0),总存在一个x0,使x>x0时,ax,logax,xn三者的大小关系如何?思考9:指数函数y=ax(01),y=logax(a>1)和y=xn(n>0)都是增函数。(2)、随着x的增大,y=ax(a>1)的增长速度越来越快,会远远大于y=xn(n>0)的增长速度。(3)、随着x的增大,y=logax(a>1)的增长速度越来越慢,会远远小于y=xn(n>0)的增长速度。总存在一个x0,当x>x0时,就有logax

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 36指数函数 幂函数 对数函数增长的比较课件 北师大版必修1 课件

您可能关注的文档

确认删除?
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群