请叙述三条公理和三条推论如果一条直线上的两点在一个平面内,那么这条直线在此平面内过不在一条直线上的三点,有且只有一个平面经过一条直线和这条直线外的一点有且只有一个平面经过两条相交直线,有且只有一个平面经过两条平行直线,有且只有一个平面如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线问题:平面几何中,两条直线的位置关系:平行或相交在空间中是否还是如此呢?在正方体A1B1C1D1-ABCD中,说出下列各对线段的位置关系ABCDA1B1C1D1(1)AB和C1D1;(2)A1C1和AC;(3)A1C和D1B:(4)AB和CC1;(5)BD1和A1C1;定义1:不同在任何一个平面内的两条直线叫做异面直线。注:1概念应理解为:“经过这两条直线无法作出一个平面”.或:“不可能找到一个平面同时经过这两条直线”.一、异面直线:2.简单地说,异面直线为既不平行也不相交的直线a与b是相交直线a与b是平行直线a与b是异面直线abM答:不一定:它们可能异面,可能相交,也可能平行。分别在两个平面内的两条直线是否一定异面?abab合作探究一NEXTBACK两直线异面的判别二:两条直线不同在任何一个平面内.练习1:在教室里找出几对异面直线的例子。两直线异面的判别一:两条直线既不相交、又不平行.注1NEXTBACK2.空间两直线的位置关系按平面基本性质分同在一个平面内相交直线平行直线不同在任何一个平面内:异面直线有一个公共点:按公共点个数分相交直线无公共点平行直线异面直线NEXTBACK2.异面直线的画法说明:画异面直线时,为了体现它们不共面的特点。常借助一个或两个平面来衬托.如图:aabaAbb(1)(3)(2)NEXTBACKABCDGHEFCGAEHDBF如图所示的是一个正方体的平面展开图,如果将它还原为正方体,那么,AB,CD,EF,GH这四条线段所在直线是异面直线的有几对?请你与同学们共同探究?看谁说得最多?共3对:AB与CD,AB与GH,GH与EF1、空间中两条直线的位置关系有()A、1种B、2种C、3种D、无数种2、空间中两条平行或相交的直线一定()A、共面B、异面C、可能共面也可能异面D、既不共面也不异面CA3、“a,b是异面直线”是指①a∩b=Φ且a不平行于b;②a平面,b平面且a∩b=Φ③a平面,b平面④不存在平面,能使a且b成立上述结论中,正确的是()(A)①②(B)①③(C)①④(D)③④注意:不能误认为分别在不同平面内的两直线就是异面直线.如:Cab3、分别在两个平面内的两条直线间的位置关系是()(A)异面(B)平行(C)相交(D)以上都有可能4、异面直线a,b满足a,b,∩=l,则l与a,b的位置关系一定是()(A)l与a,b都相交(B)l至少与a,b中的一条相交(C)l至多与a,b中的一条相交(D)l至少与a,b中的一条平行DB5:在正方体ABCD—A1B1C1D1中,直线AB与C1D1,AD1与BC1是什么位置关系?为什么?解:C1ABCDA1B1D11)∵ABA∥1B1,C1D1A∥1B1,∴ABC∥1D12)∵ABC∥1D1,且AB=C1D1∴ABC1D1为平行四边形故AD1BC∥1练习:在上例中,AA1与CC1,AC与A1C1的位置是什么关系?异面直线的判定方法:定义法:此时需借助反证法,假设两条直线不异面,根据空间两条直线的位置关系,这两条直线一定共面,即这两条直线可能相交,也可能平行,然后推出矛盾即可。定理法:即用判定定理,用该方法证明时,必须阐述定理满足的条件:然后可以推出aa,A,B,BABa直线与是异面直线.