3.1.2复数的几何意义复数z=a+bi直角坐标系中的点Z(a,b)xyobaZ(a,b)建立了平面直角坐标系来表示复数的平面x轴------实轴y轴------虚轴(数)(形)------复数平面(简称复平面)一一对应z=a+bi复数的几何意义(一)复数的几何意义(一)复数z=a+bi直角坐标系中的点Z(a,b)一一对应平面向量OZ�一一对应一一对应复数的几何意义(二)复数的几何意义(二)xyobaZ(a,b)z=a+bixOz=a+biy复数的绝对值(复数的模)的几何意义:Z(a,b)22ba对应平面向量的模||,即复数z=a+bi在复平面上对应的点Z(a,b)到原点的距离。OZ�OZ�|z|=||||zz22bazabizzabi的共轭复数用表示且xyO设z=x+yi(x,y∈R)满足|z|=5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–55||22yxz2522yx图形:以原点为圆心,5为半径的圆上5xyO设z=x+yi(x,y∈R)满足3<|z|<5(z∈C)的复数z对应的点在复平面上将构成怎样的图形?55–5–53–3–335322yx25922yx图形:以原点为圆心,半径3至5的圆环内练习:已知复数m=2-3i,若复数z满足不等式|z-m|=1,则z所对应的点的集合是什么图形?以点(2,-3)为圆心,1为半径的圆上