全等三角形与角平分线全等图形:能够完全重合的两个图形就是全等图形.全等多边形:能够完全重合的多边形就是全等多边形.相互重合的顶点叫做对应顶点,相互重合的边叫做对应边,相互重合的角叫做对应角.全等多边形的对应边、对应角分别相等.如下图,两个全等的五边形,记作:五边形ABCDE≌五边形'''''ABCDE.这里符号“≌”表示全等,读作“全等于”.A'B'C'D'E'EDCBA全等三角形:能够完全重合的三角形就是全等三角形.全等三角形的对应边相等,对应角分别相等;反之,如果两个三角形的边和角分别对应相等,那么这两个三角形全等.全等三角形对应的中线、高线、角平分线及周长面积均相等.全等三角形的概念与表示:能够完全重合的两个三角形叫作全等三角形.能够相互重合的顶点、边、角分别叫作对应顶点、对应边、对应角.全等符号为“≌”.全等三角形的性质:对应角相等,对应边相等,对应边上的中线相等,对应边上的高相等,对应角的角平分线相等,面积相等.寻找对应边和对应角,常用到以下方法:(1)全等三角形对应角所对的边是对应边,两个对应角所夹的边是对应边.(2)全等三角形对应边所对的角是对应角,两条对应边所夹的角是对应角.(3)有公共边的,公共边常是对应边.(4)有公共角的,公共角常是对应角.(5)有对顶角的,对顶角常是对应角.全等三角形的判定方法:(1)边角边定理(SAS):两边和它们的夹角对应相等的两个三角形全等.(2)角边角定理(ASA):两角和它们的夹边对应相等的两个三角形全等.(3)边边边定理(SSS):三边对应相等的两个三角形全等.(4)角角边定理(AAS):两个角和其中一个角的对边对应相等的两个三角形全等.(5)斜边、直角边定理(HL):斜边和一条直角边对应相等的两个直角三角形全等.判定三角形全等的基本思路:SASHLSSS找夹角已知两边找直角找另一边ASAAASSASAAS边为角的对边→找任意一角→找这条边上的另一角→已知一边一角边就是角的一条边找这条边上的对角→找该角的另一边→ASAAAS找两角的夹边已知两角找任意一边全等三角形的图形归纳起来有以下几种典型形式:⑴平移全等型⑵对称全等型⑶旋转全等型由全等可得到的相关定理:⑴角的平分线上的点到这个角的两边的距离相等.⑵到一个角的两边的距离相同的点,在这个角的平分线上.⑶等腰三角形的性质定理:等腰三角形的两个底角相等(即等边对等角).⑷等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合.⑸等腰三角形的判定定理如果一个三角形有两个角相等,那么这两个角所对的边也相等⑹线段垂直平分线上的点和这条线段两个端点的距离相等.⑺和一条线段两个端点距离相等的点,在这条线段的垂直平分线上.与角平分线相关的问题角平分线的两个性质:⑴角平分线上的点到角的两边的距离相等;⑵到角的两边距离相等的点在角的平分线上.它们具有互逆性.角平分线是天然的、涉及对称的模型,一般情况下,有下列三种作辅助线的方式:1.由角平分线上的一点向角的两边作垂线,2.过角平分线上的一点作角平分线的垂线,从而形成等腰三角形,3.OAOB,这种对称的图形应用得也较为普遍,ABOPPOBAABOP三角形中线的定义:三角形顶点和对边中点的连线三角形中线的相关定理:直角三角形斜边的中线等于斜边的一半等腰三角形底边的中线三线合一(底边的中线、顶角的角平分线、底边的高重合)三角形中位线定义:连结三角形两边中点的线段叫做三角形的中位线.三角形中位线定理:三角形的中位线平行于第三边并且等于它的一半.中位线判定定理:经过三角形一边中点且平行于另一边的直线必平分第三边.中线中位线相关问题(涉及中点的问题)见到中线(中点),我们可以联想的内容无非是倍长中线以及中位线定理(以后还要学习中线长公式),尤其是在涉及线段的等量关系时,倍长中线的应用更是较为常见.例题精讲板块一、全等三角形的认识与性质【例1】在AB、AC上各取一点E、D,使AEAD,连接BD、CE相交于O再连结AO、BC,若12,则图中全等三角形共有哪几对?并简单说明理由.21EODCBA【巩固】如图所示,ABAD,BCDC,EF、在AC上,AC与BD相交于P.图中有几对全等三角形?请一一找出来,并简述全等的理由.板块二、三角形全等...