1.3.11.3.1柱体、锥体、台体,球体的体积柱体、锥体、台体,球体的体积以前学过特殊的棱柱——正方体、长方体以及圆柱的体积公式,它们的体积公式可以统一为:ShV(S为底面面积,h为高).柱体体积柱体体积一般棱柱体积也是:ShV其中S为底面面积,h为棱柱的高.圆锥的体积公式:ShV31(其中S为底面面积,h为高)圆锥体积等于同底等高的圆柱的体积的.31圆锥体积圆锥体积ShV31(其中S为底面面积,h为高)由此可知,棱柱与圆柱的体积公式类似,都是底面面积乘高;棱锥与圆锥的体积公式类似,都是等于底面面积乘高的.31经过探究得知,棱锥也是同底等高的棱柱体积的.即棱锥的体积:31锥体体积锥体体积台体体积台体体积由于圆台(棱台)是由圆锥(棱锥)截成的,因此可以利用两个锥体的体积差.得到圆台(棱台)的体积公式(过程略).根据台体的特征,如何求台体的体积?ABABCDCDPSShDCBAPABCDPVVVhSSSS)(31其中,分别为上、下底面面积,h为圆台(棱台)的高.SS柱体、锥体、台体的体积公式之间有什么关系?hSSSSV)(31S为底面面积,h为柱体高ShV0SS分别为上、下底面面积,h为台体高ShV31SSS为底面面积,h为锥体高台体体积台体体积上底扩大上底缩小例3有一堆规格相同的铁制(铁的密度是)六角螺帽共重5.8kg,已知底面是正六边形,边长为12mm,内孔直径为10mm,高为10mm,问这堆螺帽大约有多少个(取3.14)?3/8.7cmg解:六角螺帽的体积是六棱柱的体积与圆柱体积之差,即:10)210(14.3106124322V)(29563mm)(956.23cm所以螺帽的个数为252)956.28.7(10008.5(个)答:这堆螺帽大约有252个.典型例题典型例题如果用油漆去涂一个乒乓球和一个篮球,且涂的油漆厚度相同,问哪一个球所用的油漆多?为什么?实际问题实际问题一个充满空气的足球和一个充满空气的篮球,球内的气压相同,若忽略球内部材料的厚度,则哪一个球充入的气体较多?为什么?实际问题实际问题334RVR的球的体积为:定理:半径是球的体积球的体积球的表面积球的表面积24RSR的球的表面积为:定理:半径是例4:圆柱的底面直径与高都等于球的直径.求证:(1)球的体积等于圆柱体积的(2)球的表面积等于圆柱的侧面积..32(1)若球的表面积变为原来的2倍,则半径变为原来的倍.(2)若球半径变为原来的2倍,则表面积变为原来的倍.(3)若两球表面积之比为1:2,则其体积之比是.(4)若两球体积之比是1:2,则其表面积之比是.2422:134:1随堂练习随堂练习影响球的表面积及体积的只有一个元素,就是球的半径.柱体、锥体、台体的体积ShV31锥体hSSSSV)(31台体柱体ShV'SS0'S知识小结知识小结球的体积球的体积球的表面积球的表面积334RV24RS