电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

高中数学 第二章(推理与证明复习小结)课件 新人教A版选修1-2 课件VIP免费

高中数学 第二章(推理与证明复习小结)课件 新人教A版选修1-2 课件_第1页
1/15
高中数学 第二章(推理与证明复习小结)课件 新人教A版选修1-2 课件_第2页
2/15
高中数学 第二章(推理与证明复习小结)课件 新人教A版选修1-2 课件_第3页
3/15
第二章推理与证明复习小结推理与证明推理证明合情推理演绎推理直接证明数学归纳法间接证明比较法类比推理归纳推理分析法综合法反证法知识结构bc+caca+abab+bc=++222222>abc+abc+abc=a+b+c.法1:∵a、b、c不相等正,且abc=1,111∴++=bc+ca+ababc证为数例.已知a、b、c不相等正,且abc=1,111求:a+b+c<++.abc为数证.111∴a+b+c<++成立abc一.综合法111111+++bccaab<++222111=++.abc法2:∵a、b、c不相等正,且abc=1,111∴a+b+c=++bccaab证为数.111∴a+b+c<++成立abc例.已知a、b、c不相等正,且abc=1,111求:a+b+c<++.abc为数证:例已知a>5,求:a-5-a-3,2111++>1,2311111131++++++>,234567211111111++++++++>223456715你能得到怎样的一般不等式,并加以证明。例:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明交点的个数f(n)等于n(n-1)/2.证:(1)当n=2时,两条直线的交点只有1个,又f(2)=2(2-1)/2=1,•因此,当n=2时命题成立.(2)假设当n=k(k≥2)时命题成立,就是说,平面内满足题设的任何k条直线的交点个数f(k)等于k(k-1)/2.以下来考虑平面内有k+1条直线的情况.任取其中的1条直线,记作l.由归纳假设,除l以外的其他k条直线的交点个数f(k)等于k(k-1)/2.另外,因为已知任何两条直线不平行,所以直线l必与平面内其他k条直线都相交,有k个交点.又因为已知任何三条直线不过同一点,所以上面的k个交点两两不相同,且与平面内其他的k(k-1)/2个交点也两两不相同.从而平面内交点的个数是k(k-1)/2+k=k[(k-1)+2]/2=(k+1)[(k+1)-1]/2.这就是说,当n=k+1时,k+1条直线的交点个数为:f(k+1)=(k+1)[(k+1)-1]/2.根据(1)、(2)可知,命题对一切大于1的正整数都成立.说明:用数学归纳法证明几何问题,重难点是处理好当n=k+1时利用假设结合几何知识证明命题成立.注:在上例的题设条件下还可以有如下二个结论:(1)设这n条直线互相分割成f(n)条线段或射线,---则:f(n)=n2.(2)这n条直线把平面分成(n2+n+2)/2个区域.练习1:凸n边形有f(n)条对角线,则凸n+1边形的对角线------的条数f(n+1)=f(n)+_________.n-1练习2:设有通过一点的k个平面,其中任何三个平面或三个以上的平面不共有一条直线,这k个平面将空间分成f(k)个区域,则k+1个平面将空间分成f(k+1)=f(k)+__________个区域.2k1:平面内有n条直线,其中任何两条不平行,任何三条不过同一点,证明这n条直线把平面分成f(n)=(n2+n+2)/2个区域.作业:

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

高中数学 第二章(推理与证明复习小结)课件 新人教A版选修1-2 课件

您可能关注的文档

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部