复习回顾:1、对数的定义;2、对数的性质;3、常用对数;4、对数恒等式。结论:log()loglogaaaMNMNlog,log(,0),log(),log,log.aaaaaMNMNMMMMN已知求logloglogaaaMMNNloglogaaMM1212log(...)logloglogaKaaaKNNNNNN推广:1、积、商、幂的对数1log,log,logaaaxyz例、用表示下列各式:2353(1)log;(2)log();(3)log;(4)logaaaaxyxyxxyzyzzlog()logaaaxyxyzz解:(1)loglogloglogaaaxyz3535(2)log()loglogaaaxyxy3log5logaaxy(3)logloglog()aaaxxyzyz12log(loglog)aaaxyz1logloglog2aaaxyz1212323(4)loglog()aaxyxyzz11232logloglogaaaxyz112logloglog23aaaxyz例2:计算7552(1)lg100;(2)log(42)2(3)lg4lg25;(4)(lg2)lg20lg55121lg100lg10055解:()757522222(2)log(42)log4log27log45log214519(3)lg4lg25lg(425)lg100222(4)(lg2)lg20lg5(lg2)(1lg2)(1lg2)22(lg2)1(lg2)12、自然对数e2.71828lnNe在科学技术中,以…为底的对数叫做自然对数.logN通常记作3、换底公式abalogNlogN=logbxbaalogNxbNaxlogblogN证明:设=,则=两边取以为的对数,得=aaabalogNx=logblogNlogN=logb所以即827log9log32例3、求的值.827lg9lg322lg35lg2log9log32=lg8lg273lg23lg3解:25103394logloglogxyxyzz例、求证:loglogloglogloglogxxyxxxzyzyzy证明:因为logloglogxyxyzz所以5loglognnaabb例:求证:loglogloglogloglognnnaaanaaabnbbbana证明:因为loglognnaabb所以6lg2,lg3lg6lg20ab例:用表示lg6lg20lg2lg32lg2lg5解:3lg2lg31lg221ab快乐体验:课本99页练习A、B,101页练习A、B.1、对数的运算法则.2、自然对数.3、换底公式.