人教B版高一数学假设银行卡的密码由6个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个。假设一个人完全忘了自己的储蓄卡密码,问他到自动取款机上随即试一次密码就能取到钱的概率是多少?如何计算随机事件的概率?设置情景(1)掷硬币(2)掷骰子(3)从字母a,b,c,d中任意取出两个不同字母的实验中,按一次性抽取的方式,哪那些基本事件?(4)若将上面的抽取方式改为按先后顺序依次抽取,结果如何呢?基本事件个数共同点“正面朝上”、“反面朝上”2“1点”、“2点”、“3点”“4点”、“5点”、“6点”66(a,b),(a,c),(a,d),(b,a)(b,c),(b,d),(c,a),(c,b)(c,d),(d,a),(d,b),(d,c)121.基本事件有有限个(a,b)、(a,c)、(a,d)(b,c)、(b,d)、(c,d)(4)(2)(1)(3)2、每个基本事件出现是等可能的思考:从基本事件出现的可能性来看,上述4个试验中的基本事件有什么共同特点?①试验中所有可能出现的基本事件只有有限个;(有限性)②每个基本事件出现的可能性相等。(等可能性)古典概率模型,简称古典概型。有限性等可能性(1)向一个圆面内随机地投射一个点,如果该点落在圆内任意一点都是等可能的,你认为这是古典概型吗?为什么?(2)某同学随机地向一靶心进行射击,这一试验的结果只有有限个:“命中10环”、“命中9环”、“命中8环”、“命中7环”、“命中6环”、“命中5环”和“不中环”。你认为这是古典概型吗?为什么?1099998888777766665555有限性等可能性①在抛掷一枚质地均匀的硬币试验中,“正面朝上”的概率是多少?②在抛掷一枚质地均匀的骰子试验中,“出现点数为1”的概率是多少?③在抛掷一枚质地均匀的骰子试验中,“出现奇数点”的概率是多少?小组探究二思考:在古典概型下,基本事件出现的概率是多少?随机事件出现的概率如何计算?12163162AAmPn所包含的基本事件的个数()=基本事件的总数古典概型概率计算公式:假设银行卡的密码由6个数字组成,每个数字可以是0,1,2,…,9十个数字中的任意一个。假设一个人完全忘了自己的储蓄卡密码,问他到自动取款机上随即试一次密码就能取到钱的概率是多少?基本事件总数有1000000个。记事件A表示“试一次密码就能取到钱”,它包含的基本事件个数为1,解:这是一个古典概型,则,由古典概型的概率计算公式得:A1A1000000P所包含的基本事件的个数()=基本事件的总数例1:不定项选择题是从A、B、C、D四个选项中选出所有正确的答案,同学们可能有一种感觉,如果不知道正确答案,多选题更难猜对,这是为什么?基本事件有:(A);(B);(C);(D)(A、B);(B、C);(A、C);(A、D);(B、D);(C、D);(A、B、C);(B、C、D);(A、B、D);(A、C、D);(A、B、C、D);基本事件总数数所包含的基本事件的个答对""P(“答对”)=151例2(掷骰子问题)同时掷两个骰子,计算:(1)一共有多少种不同的等可能结果?(2)其中向上的点数之和是5的结果有多少种?(3)向上的点数之和是5的概率是多少?(4)若以两颗骰子的点数和打赌,你认为压几点最有利?.(1)一共有多少种不同的等可能结果?1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6).(2)其中向上的点数之和是5的结果有多少种?解:.由上表可知,向上的点数之和是5的结果有4种.1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5)(2,6)3(3,1)(3,2)(3,3)(3,4)(3,5)(3,6)4(4,1)(4,2)(4,3)(4,4)(4,5)(4,6)5(5,1)(5,2)(5,3)(5,4)(5,5)(5,6)6(6,1)(6,2)(6,3)(6,4)(6,5)(6,6)(1,4)(3,2)(2,3)(4,1)(3)向上的点数之和是5的概率是多少?解:.设事件A表示“向上点数之和为5”,由(2)可知,事件A包含的基本事件个数为4个.于是由古典概型的概率计算公式可得A41A369P所包含的基本事件的个数=基本事件的总数(4)若以两颗骰子的点数和打赌,你认为压几点最有利?1234561(1,1)(1,2)(1,3)(1,4)(1,5)(1,6)2(2,1)(2,2)(2,3)(2,4)(2,5...