济源市实验中学五环自主教案备课人卢海战课型新授时间9月4日课题二次根式(2)教学目标教学目标理解a(a≥0)是一个非负数和(a)2=a(a≥0),并利用它们进行计算和化简.通过复习二次根式的概念,用逻辑推理的方法推出a(a≥0)是一个非负数,用具体数据结合算术平方根的意义导出(a)2=a(a≥0);最后运用结论严谨解题.教学重难点教学重难点关键1.重点:a(a≥0)是一个非负数;(a)2=a(a≥0)及其运用.2.难点、关键:用分类思想的方法导出a(a≥0)是一个非负数;用探究的方法导出(a)2=a(a≥0).板书设计一、复习引入(学生活动)口答1.什么叫二次根式?2.当a≥0时,a叫什么?当a<0时,a有意义吗?老师点评(略).二、探究新知议一议:(学生分组讨论,提问解答)a(a≥0)是一个什么数呢?老师点评:根据学生讨论和上面的练习,我们可以得出a(a≥0)是一个非负数.做一做:根据算术平方根的意义填空:(4)2=_______;(2)2=_______;(9)2=______;(3)2=_______;(13)2=______;(72)2=_______;(0)2=_______.明目标深钻研巧设计细反思共发展济源市实验中学五环自主教案老师点评:4是4的算术平方根,根据算术平方根的意义,4是一个平方等于4的非负数,因此有(4)2=4.同理可得:(2)2=2,(9)2=9,(3)2=3,(13)2=13,(72)2=72,(0)2=0,所以(a)2=a(a≥0)例1计算1.(32)22.(35)23.(56)24.(72)2分析:我们可以直接利用(a)2=a(a≥0)的结论解题.解:(32)2=32,(35)2=32·(5)2=32·5=45,(56)2=56,(72)2=22(7)724.三、巩固练习计算下列各式的值:(18)2(23)2(94)2(0)2(478)222(35)(53)四、应用拓展例2计算:1.(1x)2(x≥0);2.(2a)2;3.(221aa)2;4.(24129xx)2分析:(1)因为x≥0,所以x+1>0;(2)a2≥0;(3)a2+2a+1=(a+1)≥0;(4)4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2≥0.所以上面的4题都可以运用(a)2=a(a≥0)的重要结论解题.解:(1)因为x≥0,所以x+1>0(1x)2=x+1(2)∵a2≥0,∴(2a)2=a2(3)∵a2+2a+1=(a+1)2明目标深钻研巧设计细反思共发展济源市实验中学五环自主教案又∵(a+1)2≥0,∴a2+2a+1≥0,∴221aa=a2+2a+1(4)∵4x2-12x+9=(2x)2-2·2x·3+32=(2x-3)2又∵(2x-3)2≥0∴4x2-12x+9≥0,∴(24129xx)2=4x2-12x+9例3在实数范围内分解下列因式:(1)x2-3(2)x4-4(3)2x2-3分析:(略)五、归纳小结本节课应掌握:1.a(a≥0)是一个非负数;2.(a)2=a(a≥0);反之:a=(a)2(a≥0).六、布置作业1.教材P8复习巩固2.(1)、(2)P97.教学反思明目标深钻研巧设计细反思共发展济源市实验中学五环自主教案明目标深钻研巧设计细反思共发展教学设计二次备课