水分1简要概括食品中的水分存在状态。食品中的水分有着多种存在状态,一般可将食品中的水分分为自由水(或称游离水、体相水)和结合水(或称束缚水、固定水)。其中,结合水又可根据被结合的牢固程度,可细分为化合水、邻近水、多层水;自由水可根据这部分水在食品中的物理作用方式也可细分为滞化水、毛细管水、自由流动水。但强调的是上述对食品中的水分划分只是相对的。2简述食品中结合水和自由水的性质区别食品中结合水和自由水的性质区别主要在于以下几个方面:⑴食品中结合水与非水成分缔合强度大,其蒸汽压也比自由水低得很多,随着食品中非水成分的不同,结合水的量也不同,要想将结合水从食品中除去,需要的能量比自由水高得多,且如果强行将结合水从食品中除去,食品的风味、质构等性质也将发生不可逆的改变;⑵结合水的冰点比自由水低得多这也是植物的种子及微生物孢子由于几乎不含自由水,可在较低温度生存的原因之一;而多汁的果蔬,由于自由水较多,冰点相对较高,且易结冰破坏其组织;⑶结合水不能作为溶质的溶剂;⑷自由水能被微生物所利用,结合水则不能,所以自由水较多的食品容易腐败。3 比较冰点以上和冰点以下温度的 aW 差异。在比较冰点以上和冰点以下温度的 aW 时,应注意以下三点:⑴在冰点温度以上,aW 是样品成分和温度的函数,成分是影响 aW 的主要因素。但在冰点温度以下时,aW 与样品的成分无关,只取决于温度,也就是说在有冰相存在时,aW 不受体系中所含溶质种类和比例的影响,因此不能根据 aW 值来准确地预测在冰点以下温度时的体系中溶质的种类及其含量对体系变化所产生的影响。所以,在低于冰点温度时用 aW 值作为食品体系中可能发生的物理化学和生理变化的指标,远不如在高于冰点温度时更有应用价值;⑵食品冰点温度以上和冰点温度以下时的 aW 值的大小对食品稳定性的影响是不同的;⑶低于食品冰点温度时的 aW 不能用来预测冰点温度以上的同一种食品的 aW。4MSI 在食品工业上的意义MSI 即水分吸着等温线,其含义为在恒温条件下,食品的含水量(每单位干物质质量中水的质量表示)与 aW 的关系曲线。它在食品工业上的意义在于:⑴在浓缩和干燥过程中样品脱水的难易程度与 aW 有关;⑵配制混合食品必须避免水分在配料之间的转移;⑶测定包装材料的阻湿性的必要性;⑷测定什么样的水分含量能够抑制微生物的生长;⑸预测食品的化学和物理稳定性与水分的含量关系。5滞后现象产生的主要原因。...