初中数学阅读初中数学阅读理解问题理解问题 例 1 请阅读下面材料,并回答所提出 的问题。 三角形内角平分线定理:三角形的内角平分线分对边所得的两条线段和这个角的两边对应成比例已知:如图,△ ABC 中,AD 是角平分线。 求证: ACABDCBD 证明:过证明:过 CC 作作 CE∥DACE∥DA ,交,交 BABA 的延长线于的延长线于EE CE∥DA CE∥DA CE∥DACE∥DA21321E3EACAE ACABDCBDACAEAEBADCBD 11 、上述证明过程中,用到了哪些定理?、上述证明过程中,用到了哪些定理?(写两个定理即可)(写两个定理即可)22 、在上述分析、证明过程中,主要用到了、在上述分析、证明过程中,主要用到了下列三种数学思想的哪一种?选出一个填下列三种数学思想的哪一种?选出一个填在后面括号内( )在后面括号内( ) ① ① 数形结合思想;②转化思想;数形结合思想;②转化思想; ③ ③ 分类讨论思想分类讨论思想33 、用三角形内角平分线定理解答:已知如、用三角形内角平分线定理解答:已知如图,△图,△ ABCABC 中,中, ADAD 是角平分线,是角平分线, AB=AB=5cm5cm ,, AC=4cm,BC=7cm,AC=4cm,BC=7cm, 求求 BDBD 的长。的长。 11 、上述证明过程中,用到了哪些定理?(写两、上述证明过程中,用到了哪些定理?(写两个定理即可)个定理即可)(( 11 )平行线的性质定理:两直线平行,同位角)平行线的性质定理:两直线平行,同位角相等,内错角相等。相等,内错角相等。(( 22 )等腰三角形的判定定理(推论):在同一)等腰三角形的判定定理(推论):在同一三角形中,等角对等边。三角形中,等角对等边。(( 33 )平行线分线段成比例定理(推论):平行)平行线分线段成比例定理(推论):平行于三角形一边的直线截其它两边,所得对应线于三角形一边的直线截其它两边,所得对应线段成比例。(写定理的名称或内容均可)段成比例。(写定理的名称或内容均可) 33 、用三角形内角平分线定理解答已知、用三角形内角平分线定理解答已知如图,△如图,△ ABCABC 中,中, ADAD 是角平分线,是角平分线,AB=5cmAB=5cm ,, AC=4cm,BC=7cm,AC=4cm,BC=7cm, 求求BDBD 的长。的长。解: 解: ADAD 是角平线,是角平线,又 又 AB=5AB=5 ,, AC=4AC=4 ,, BC=7BC=7ACABDCBD 935,457BDBDBD 例 2 、已知,如图 1...