盛年不再来,一日难再晨,及时当勉励,岁月不待人一、二面角的定义:二、二面角的表示方法:三、二面角的平面角:四、二面角的平面角的作法:五、二面角的计算:二 面 角 - AB - 二 面 角 C - AB - D二 面 角 - l - 1 、根据定义作出来——定义法2 、利用直线和平面垂直作出来 —— 垂面法3 、借助三垂线定理或其逆定理作出来 —— 三垂线法从一条直线出发的两个半平面所组成的图形叫做二面角。这条直线叫做二面角的棱。这两个半平面叫做二面角的面。 1 、二面角的平面角 必须满足三个条件2 、二面角的平面角 的大小与 其顶点 在棱上的位置无关3 、二面角的大小用 它的平面角的大 小来度量 复习回顾:一、两个平面垂直的定义 :[ 情境问题 ] ( 1 )竖电线杆时,电线杆所在的直线与地面应满足怎样的位置呢? ( 2 )为了让一面墙砌得稳固,不易倒塌,墙面所在的平面与地面又应该满足怎样的位置关系呢? 容易得出结论:电线杆与地面应该垂直,否则容易倾倒;如果墙面发生倾斜,墙就容易倒塌,所以砌墙时,不能让墙面倾斜. ( 3 )我们怎样用所学知识去描述“墙面不倾斜”这一事实呢?[探索研究]1 .平面与平面垂直的定义 : 如果两个平面所成的二面角是直角(即成直二面角),就说这两个平面互相垂直.2 .两个平面垂直的判定定理 : 提出问题:如果你是一个质检员,你怎样去检测、判断建筑中的一面墙和地面是否垂直呢? 你发现了什么?观察生活已知 :ABβ,AB ∩β=B,AB α ⊥ 求证 :αβ⊥∩证明 : 设 α∩β=CD, 则 BCD∈ ABβ,CD βABCD⊥∴⊥在平面 β 内过点 B 作直线 BECD⊥ ∴ ∠ABE 是二面角 α—CD — β 的平面角 ABβ BE βABBE ⊥∴⊥即∠ ABE=90 。∴ 二面角 α—CD — β 是直二面角∴ αβ⊥∩∩如果一个平面经过了另一个平面的一条垂线,那么这两个平面互相垂直 .ABEDC线线垂直线面垂直面面垂直如果一个平面经过了另一个平面的一条垂线,那么这两个平面互相垂直 .αβaA简记:线面垂直,则面面垂直符号 :ll证明两个平面垂直有那些方法?1. 定义法2. 两平面垂直的判定定理二、两个平面垂直的判定定理 :建筑工人砌墙时,如何使所砌的墙和水平面垂直?应用于生活2. 正方体 ABCD-A1B1C1D1 中 求证 :111AAC CA BD面面证明 :1AAABCD面ABCDBD面又1AABDBDAC1ACAAA...