专题研究:数列的求和·例题解析 【例 1】 求下列数列的前 n 项和 Sn:(1)(2) 13(3)11111122 143181223132313231323121214121412234562121,,,…,,…;,,,…,,…;, +, +,…, +++…+,….()nnnnn解 (1)S = 112= (123n)n2 143181212141812…+ + +…++…()()nnn= n(n +1)2=112 1121121212()()nnn n+(2)S = 13= (13 + 13 ++13) + ( 23 + 23 ++ 23)n32n-1242n2313231323234212………nn=13()()()1131132311311358 113222222nnn(3)先对通项求和a = 1 S = (222)(1+ 14 ++ 12)nnn-1 1214122121211…∴+ +…+-+…nn= 2n(1+ 14 ++ 12)= 2n2n-1-+…- +12121n【例 2】 求和:(1)11+123 +134 +(2)11(3)12···…···…···…2115137159121 2351581811131 32n nnnnn()()()()()解 (1)1n(n +1) 111111212131314111nnSnnn∴…()()()() 1111nnn(2)1(2n1)(2n + 3) S =n1412112314 11513171519123121121123()[]nnnnnn∴…= 14 113121123453 21 23[]()()()nnnnnn(3)1(3n1)(3n + 2) S = 13n131311321215151818111131132()[()()()()]nnnn∴…= 13()1213264nnn【例 3】 求下面数列的前 n 项和:1147(3n2)+ ,+ ,+ ,…,+-,…11121aaa n分析 将数列中的每一项拆成两个数,一个数组成以为公比的等1a比数列,另一个数组成以 3n-2 为通项的等差数列,分别求和后再合并.解 设数列的通项为 an,前 n 项和为 Sn则+∴…+ + + +…+-a =1a(3n2) S =[147(3n2)]nn 1n()111121aaa n当时,+·当 ≠ 时,a = 1S = na1S =11a11annn[()]()()1322321322131221nnnnnnaaannnnn说明 等比数列的求和问题,分 q=1 与 q≠1 两种情况讨论.【例4】 a =k (kN*)aaak设++…+∈,则数列,,,12357222123…的前 n 项之和是[ ]ABCD....613161612nnnnnnnn()()解 bb =nn设数列,,,…,的通项为.则35721123aaana n又 ++…+++∴ a= 12n =n(n1)(2n1) b =6n(n +1) ...