1 综合练习题1(函数、极限与连续部分)1.填空题(1)函数)2ln(1)(xxf的定义域是. 答案:2x且3x. (2)函数24)2ln(1)(xxxf的定义域是.答案:]2,1()1,2((3)函数74)2(2xxxf,则)(xf. 答案:3)(2xxf(4)若函数0,0,13sin)(xkxxxxf在0x处连续, 则 k.答案:1k(5)函数xxxf2)1(2,则)(xf.答案:1)(2xxf(6)函数1322xxxy的间断点是.答案:1x(7)xxx1sinlim.答案: 1 (8)若2sin4sinlim0kxxx,则 k.答案:2k2.单项选择题(1)设函数2eexxy,则该函数是().A.奇函数B.偶函数C.非奇非偶函数 D .既奇又偶函数答案: B (2)下列函数中为奇函数是().A.xxsinB.2eexxC.)1ln(2xxD.2xx答案: C(3)函数)5ln(4xxxy的定义域为().A.5x B.4x C .5x且0x D.5x且4x答案: D ( 4)设1)1(2xxf,则)(xf()A.)1(xx B.2x2 C.)2(xx D .)1)(2(xx答案: C (5)当 k()时,函数0,0,2)(xkxexfx在0x处连续 . A.0 B.1 C. 2D. 3答案: D(6)当 k()时,函数0,0,1)(2xkxxxf,在0x处连续 . A. 0 B.1 C. 2 D .1答案: B (7)函数233)(2xxxxf的间断点是()A.2,1 xx B.3xC.3,2,1xxx D.无间断点答案: A 3.计算题(1)423lim222xxxx.解:4121lim)2)(2()1)(2(lim423lim22222xxxxxxxxxxxx(2)329lim223xxxx解:234613lim)1)(3()3)(3(lim329lim33223xxxxxxxxxxxx( 3)4586lim224xxxxx解:3212lim)1)(4()2)(4(lim4586lim44224xxxxxxxxxxxxx综合练习题2(导数与微分部分)3 1.填空题(1)曲线1)(xxf在)2,1(点的切斜率是.答案:21(2)曲线xxfe)(在)1,0(点的切线方程是.答案:1xy(3)已知xxxf3)(3,则)3(f= .答案:3ln33)(2xxxf)3(f=27()3ln1(4)已知xxfln)(,则)(xf= .答案:xxf1)(,)(xf=21x(5)若xxxfe)(,则)0(f.答案:xxxxfee2)()0(f22. 单项选择题(1)若xxfx cose)(,则)0(f=().A. 2 B. 1 C. -1 D. -2 因)(cosecos)e()cose()(xxxxfxxx)sin(cosesinecosexxxxxxx所以)0(f1)0sin0(cose0答案: C (2)设 yxlg2,则 dy().A. 12dxx B.1dxxln10 C. ln10xxd D. 1 dxx答案: B (3)设)( xfy是可微函数,则)2(cosdxf(). A.xxfd)2(cos2 B.xxxfd22sin)2(cos4 C.xxxfd2sin)2(cos2 D.xxxfd22sin)2(cos答案: D (4)若3sin)(axxf,其中 a 是常数,则)(xf(). A .23cosax B.ax6sin C.xsin D.xcos答案...