1 二项分布及其应用 ◇条件概率◇ 一、条件概率的定义与性质 如果事件A发生与否,会影响到事件B的发生,在知道事件A发生的条件下去研究事件B时,基本事件空间发生了变化,从而B发生的概率也随之改变,这就条件概率要研究的问题。 1.定义:一般地,设A、B为两个事件,且P(A)>0,称P(B|A)= 为在事件A发生的条件下,事件B发生的条件概率,一般把P(B|A)读作A发生的条件下B的概率. 2.性质:(1)条件概率具有概率的性质,任何事件的条件概率都在0和1之间,即 . (2)如果B和C是两个互斥事件,则P(B∪C|A)= 二、典型例题 1、利用定义求条件概率 例1:抛掷两颗均匀的骰子,问 (1)至少有一颗是6点的概率是多少? (2)在已知两颗骰子点数不同的条件下,至少有一颗是6点的概率是多少? 例2:抛掷红蓝两颗骰子,设事件A为“蓝色骰子的点数为3或 6”,事件B为“两颗骰子的点数之和大于 8”。 (1)求P(A),P(B),P(AB); (2)在已知蓝色骰子的点数为3或 6时,求两颗骰子的点数之和大于 8的概率。 2、利用缩小基本事件空间的方法求条件概率 例1:一个口袋内装有4个白球和2个黑球,若不放回地抽取 3次,每次抽一个小球,求 (1) 第一次摸出一个白球的情况下,第二次与第三次均是白球的概率。 (2) 第一次和第二次均是白球的情况下,第三次是白球的概率。 2 例2:设10件产品中有4件次品,从中任取2件,那么 (1)在所取得产品中发现是一件次品,求另一件也是次品的概率。 (2)若每次取一件,在所得的产品中第一次取出的是次品,那么求第二件也是次品的概率。 3、条件概率的性质及应用 例1:在某次考试中,要从20道中随机地抽出6道题,若考试至少答对其中4道即可通过;若至少答对其中5道就获得优秀,已知某生能答对其中10道题目,且知道他在这次考试中已经通过,求他获得优秀的概率。 例2:把一副扑克牌(不含大小王)随机均分给赵、钱、孙、李四家,A={赵家得到 6张梅花},B={孙家得到 3张梅花} (1)求P(B|A)(2)求P(AB) 三、课堂练习 1、把一颗骰子连续抛掷两次,已知在第一次抛出偶数点的情况下,第二次抛出的也是偶数点的概率是多少? 2、一个盒子中装有6件合格产品和 4件次品,不放回地任取两次,每次取一件。若已知第一件是合格品的情况下,求第二件也是合格品的概率。 3 ◇事件的相互独立性◇ 一、相互独立事件的定义 如果事件A的发生不会影响事件B发生的概率,或事件B的发生不会影响事件A发生的概率,...