- 1 - 《圆》章节知识点复习 三、直线与圆的位置关系 1、直线与圆相离 dr 无交点; 2、直线与圆相切 dr 有一个交点; 3、直线与圆相交 dr 有两个交点; 四、圆与圆的位置关系 外离(图1) 无交点 dRr; 外切(图2) 有一个交点 dRr; 相交(图3) 有两个交点 RrdRr; 内切(图4) 有一个交点 dRr; 内含(图5) 无交点 dRr; 五、垂径定理 垂直于弦的直径平分弦且平分弦所对的弧。 推论1:(1)平分弦(不是直径)的直径垂直于弦,并且平分弦所对的两条弧; (2)弦的垂直平分线经过圆心,并且平分弦所对的两条弧; (3)平分弦所对的一条弧的直径,垂直平分弦,并且平分弦所对的另一条弧 以上共4个定理,简称2推3定理:此定理中共5个结论中,只要知道其中2个即可推出其它3个结论,即: ①AB 是直径 ②ABCD ③CEDE ④ 弧BC 弧BD ⑤ 弧AC 弧AD 中任意2个条件推出其他3个结论。 推论2:圆的两条平行弦所夹的弧相等。 即:在⊙O 中, AB ∥CD ∴弧AC 弧BD 六、圆心角定理 rdd=rdr图3rRd图1rRd图2rRd图4rRd图5rRdOEDCBAOCDAB - 2 - 圆心角定理:同圆或等圆中,相等的圆心角所对的弦相等,所对的弧相等,弦心距相等。 此定理也称1推3定理,即上述四个结论中, 只要知道其中的1个相等,则可以推出其它的3个结论, 即:①AOBDOE ;②ABDE; ③OCOF;④ 弧BA 弧BD 七、圆周角定理 1、圆周角定理:同弧所对的圆周角等于它所对的圆心的角的一半。 即: AOB和ACB是弧AB 所对的圆心角和圆周角 ∴2AOBACB 2、圆周角定理的推论: 推论1:同弧或等弧所对的圆周角相等;同圆或等圆中,相等的圆周角所对的弧是等弧; 即:在⊙O 中, C、D都是所对的圆周角 ∴CD 推论2:半圆或直径所对的圆周角是直角;圆周角是直角所对的弧是半圆,所对的弦是直径。 即:在⊙O 中, AB 是直径 或 9 0C ∴9 0C ∴ AB 是直径 推论3:若三角形一边上的中线等于这边的一半,那么这个三角形是直角三角形。 即:在△ ABC 中, OCOAOB ∴△ ABC 是直角三角形或9 0C 注:此推论实是初二年级几何中矩形的推论:在直角三角形中斜边上的中线等于斜边的一半的逆定理。 八、圆内接四边形定理:圆的内接四边形的对角互补,外...