电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

排队论练习题VIP免费

排队论练习题_第1页
1/7
排队论练习题_第2页
2/7
排队论练习题_第3页
3/7
第 9 章 排队论判断下列说法是否正确:(1)若到达排队系统的顾客为泊松流,则依次到达的两名顾客之间的间隔时间服从负指数分布;(2)假如到达排队系统的顾客来自两个方面,分别服从泊松分布,则这两部分顾客合起来的顾客流仍为泊松分布;(3)若两两顾客依次到达的间隔时间服从负指数分布,又将顾客按到达先后排序,则第1、3、5、7,⋯名顾客到达的间隔时间也服从负指数分布;(4)对 M/M/1 或 M/M/C 的排队系统,服务完毕离开系统的顾客流也为泊松流;(5)在排队系统中,一般假定对顾客服务时间的分布为负指数分布,这是因为通过对大量实际系统的统计研究,这样的假定比较合理;(6)一个排队系统中,不管顾客到达和服务时间的情况如何,只要运行足够长的时间后,系统将进入稳定状态;(7)排队系统中,顾客等待时间的分布不受排队服务规则的影响;(8)在顾客到达及机构服务时间的分布相同的情况下,对容量有限的排队系统,顾客的平均等待时间将少于允许队长无限的系统;(9)在顾客到达的分布相同的情况下,顾客的平均等待时间同服务时间分布的方差大小有关,当服务时间分别的方差越大时,顾客的平均等待时间将越长;(10)在机器发生故障的概率及工人修复一台机器的时间分布不变的条件下,由 1 名工人看管 5 台机器,或由3 名工人联合看管15 台机器时,机器因故障等待工人维修的平均时间不变。M/M/1、某理发店只有一名理发师,来理发的顾客按泊松分布到达,平均每小时4 人,理发时间服从负指数分布,平均需6 小时,求:(1)理发店空闲时间的概率;(2)店内有 3 个顾客的概率;(3)店内至少有1 个顾客的概率;(4)在店内顾客平均数;(5)在店内平均逗留时间;(6)等待服务的顾客平均数;(7)平均等待服务时间;(8)必须在店内消耗15 分钟以上的概率。、某修理店只有一个修理工,来修理东西的顾客到达次数服从泊松分布,平均每小时4人,修理时间服从负指数分布,平均需6 分钟。求:(1)修理店空闲时间的概率;(2)店内有 3 个顾客的概率;(3)店内顾客平均数;(4)店内等待顾客平均数;(5)顾客在店内平均逗留时间;(6)平均等待修理时间。、对 M/M/1的排队模型,根据下列等式右侧的表达式分别解释的含义:(1) =; (2)Pn0= () ; (3)sqLL=-;(4)qsWW=。、汽车平均以每5 分钟一辆的到达率去某加油站加油,到达过程为泊松过程,该加油站只有一台加油设备,加油时间服从负指数分布,...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

排队论练习题

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部