1 第四章 一元线性回归 第一部分 学习目的和要求 本章主要介绍一元线性回归模型、回归系数的确定和回归方程的有效性检验方法。回归方程的有效性检验方法包括方差分析法、t检验方法和相关性系数检验方法。本章还介绍了如何应用线性模型来建立预测和控制。需要掌握和理解以下问题: 1 一元线性回归模型 2 最小二乘方法 3 一元线性回归的假设条件 4 方差分析方法 5 t检验方法 6 相关系数检验方法 7 参数的区间估计 8 应用线性回归方程控制与预测 9 线性回归方程的经济解释 第二部分 练习题 一、术语解释 1 解释变量 2 被解释变量 3 线性回归模型 4 最小二乘法 5 方差分析 6 参数估计 7 控制 8 预测 二、填空 1 在经济计量模型中引入反映( )因素影响的随机扰动项t ,目的在于使模型更符合( )活动。 2 在经济计量模型中引入随机扰动项的理由可以归纳为如下几条:(1)因为人的行为的( )、社会环境与自然环境的( )决定了经济变量本身的( );(2)建立模型时其他被省略的经济因素的影响都归入了( )中;(3)在模型估计时,( )与归并误差也归入随机扰动项中;(4)由于我们认识的不足,错误的设定了( )与( )之间的数学形式,例如将非线性的函数形式设定为线性的函数形式,由此产生的误差也包含在随机扰动项中了。 3 ( )是因变量离差平方和,它度量因变量的总变动。就因变量总变动的变异来源看,它由两部分因素所组成。一个是自变量,另一个是除自变量以外的其他因素。( )是拟合值的离散程度的度量。它是由自变量的变化引起的因变量的变化,或称自变量对因变量变化的贡献。( )是度量实际值与拟合值之间的差异,它是由自变量以外的其他因素所致,它又叫残差或剩余。 4 回归方程中的回归系数是自变量对因变量的( )。某自变量回归系数 的意义,指 2 的是该自变量变化一个单位引起因变量平均变化( )个单位。 5 模型线性的含义,就变量而言,指的是回归模型中变量的( );就参数而言,指的是回归模型中的参数的( );通常线性回归模型的线性含义是就( )而言的。 6 样本观察值与回归方程理论值之间的偏差,称为( ),我们用残差估计线性模型中的( )。 三、简答题 1 在线性回归方程中,“线性”二字如何理解? 2 用最小二乘法求线性回归方程系数的意义是什么? 3 一元线性回归方程的基本假设条件是什么? 4 方差分析方法把数...