Monte Carlo method Monte Carlo,又称统计模拟法、随机抽样技术,是一种基于“随机数”的计算方法。这一方法源于美国在第一次世界大战进研制原子弹的“曼哈顿计划”。该计划的主持人之一、数学家冯·诺伊曼用驰名世界的赌城—摩纳哥的Monte Carlo—来命名这种方法,为它蒙上了一层神秘色彩。 Monte Carlo 方法的基本思想很早以前就被人们所发现和利用。早在17 世纪,人们就知道用事件发生的“频率”来决定事件的“概率”。19 世纪人们用投针试验的方法来决定圆周率π 。本世纪40 年代电子计算机的出现,特别是近年来高速电子计算机的出现,使得用数学方法在计算机上大量、快速地模拟这样的试验成为可能。 考虑平面上的一个边长为1 的正方形及其内部的一个形状不规则的“图形”, 如何求出这个“图形”的面积呢?Monte Carlo 方法是这样一种“随机化”的方法:向该正方形“随机地”投掷N 个点落于“图形”内,则该“图形”的面积近似为M/N。 可用民意测验来作一个不严格的比喻。民意测验的人不是征询每一个登记选民的意见,而是通过对选民进行小规模的抽样调查来确定可能的优胜者。其基本思想是一样的。 科技计算中的问题比这要复杂得多。比如金融衍生产品(期权、期货、掉期等)的定价及交易风险估算,问题的维 数(即变量的个数)可能高达数百甚至数千。对这类问题,难度随维数的增加呈指数增长,这就是所谓的“维数的灾难”(Course Dimensionality),传统的数值方法难以对付(即使使用速度最快的计算机)。Monte Carlo 方法能很好地用来对付维数的灾难,因为该方法的计算复杂性不再依赖于维数。以前那些本来是无法计算的问题现在也能够计算量。为提高方法的效率,科学家们提出了许多所谓的“方差缩减”技巧。 Monte Carlo 方法有三个主要步骤: 1、构造或描述概率过程: 对于本身就具有随机性质的问题,如粒子输运问题,主要是正确描述和模拟这个概率过程,对于本来不是随机性质的确定性问题,比如计算定积分,就必须事先构造一个人为的概率过程,它的某些参量正好是所要求问题的解。即要将不具有随机性质的问题转化为随机性质的问题。 2、实现从已知概率分布抽样: 构造了概率模型以后,由于各种概率模型都可以看作是由各种各样的概率分布构成的,因此产生已知概率分布的随机变量(或随机向量),就成为实现蒙特卡罗方法模拟实验的基本手段,这也是蒙特卡罗方法被称为随机抽样的原因。最简单、最基本、最重要的...