电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

初二数学专题训练:一线三等角模型及应用A班(答案与解析)

初二数学专题训练:一线三等角模型及应用A班(答案与解析)_第1页
1/9
初二数学专题训练:一线三等角模型及应用A班(答案与解析)_第2页
2/9
初二数学专题训练:一线三等角模型及应用A班(答案与解析)_第3页
3/9
1 一线三等角模型及其应用A 班 (时间:6 0 分钟 满分:1 0 0 分) 姓名: 得分: 【知识点睛】 “一线三等角”在初中几何中出现得比较多,是一种常见的全等或相似模型,指的是有三个等角的顶点在同一条直线上构成全等或相似图形.这三个等角可以是直角也可以是锐角或钝角,可以是在直线的同侧,也可以是在直线的异侧. 一、“一线三等角”的基本构图: 二、“一线三等角”的基本性质: 1.如果123 =  =  ,那么DCBE= ,ABDE= . 2.如果图中ABD与CEB中有一组对应边相等,则有ABDCEB . 三、“一线三等角”的基本应用: 对于八年级而言,“一线三等角”主要应用于导角证三角形的全等,最常见的是直角型“一线三等角”,其次是6 0 角和4 5 角及一般的角. 四、“一线三等角”的用法: 若一线三等角都具备则直接应用;若一线三等角不完全具备,则需要构造出一线三等角. 五、“一线三等角”的三大模块 (1)直角型“一线三等角”——“三垂直” 直角型“一线三等角”又称“三垂直”或“K”形图,是“一线三等角”问题中最为常见的一种.认识“三垂直”模型:直线绕直角顶点旋转,由外到内,由一般到特殊. (2)等边三角形中的“一线三等角” (3)等腰直角三角形中的“一线三等角” 321132CEBADDCBE ll 2 1、(16 分)如图, ABC中,ABAC=,D 、E 、F 分别为 AB 、BC 、AC 上的点,且 BDCE=, DEFB=  . (1)求证:BDECEF= ; (2)当6 0A= 时,求证: DEF为等边三角形. 【解答】证明: (1)DEC是 BDE的一个外角, BBDEDEFCEF+ = + , DEFB= , BDECEF= ; (2)由(1)可知BDECEF= , ABAC=,6 0A= 6 0BC= = , 6 0DEF= , 在 BDE和 CEF中 BCBDCEBDECEF= ==  ()BDECEF ASA , DEEF=, DEF为等边三角形 3 2、(18 分)探究:如图①,在 ABC中,9 0BAC= , ABAC=,直线 m 经过点 A , BDm⊥于点 D ,CEm⊥于点 E ,求证:ABDCAE . 应用:如图②,在 ABC中,ABAC=,D 、A 、E 三点都在直线 m 上,并且有BDAAECBAC= = ,求证: DEBDCE=+. 【解答】证明:(1)BD ⊥ 直线 m , CE ⊥ 直线 m , 9 0BDACEA= = , 9 0BAC= 9 0BADCAE+ ...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

初二数学专题训练:一线三等角模型及应用A班(答案与解析)

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部