1 第一章 特殊平行四边形 1.1 菱形的性质与判定(一) 学习目标: ①通过折、剪纸张的方法,探索菱形独特的性质。 ②通过学生间的交流、计论、分析、类比、归纳、运用已学过的知识总结菱形的特征。 教学重点:菱形的概念和菱形的性质,菱形的面积公式的推导。 教学难点:菱形的性质的理解及菱形性质的灵活运用。 学习过程: 活动一: 自学课本例题以上的内容,完成下列问题: 1. 如何从一个平行四边形中剪出一个菱形来? 的四边形叫做菱形,生活中的菱形有 。 2. 按探究步骤剪下一个四边形。 ①所得四边形为什么一定是菱形? ②菱形为什么是轴对称图形? 有 对称轴。 图中相等的线段有: 图中相等的角有: ③你能从菱形的轴对称性中得到菱形所具有的特有的性质吗?自己完成证明。 性质: 证明: 活动二:对比菱形与平行四边形的对角线 菱形的对角线: 平行四边的对角线: 活动三:菱形性质的应用 平行四边形 菱形 2 1.菱形的两条对角线的长分别是6cm 和8cm,求菱形的周长和面积。 2.如图,菱形花坛ABCD 的边长为20cm,∠ABC=60 ° 沿菱形的两条对角线修建了两条小路AC 和BD, 求两条小路的长和花坛的面积。 课效检测: 一、填空 (1)菱形的两条对角线长分别是12cm ,16cm ,它的周长等于 ,面积等于 。 (2)菱形的一条边与它的两条对角线所夹的角比是3:2,菱形的四个内角是 。 (3)已知:菱形的周长是20cm ,两个相邻的角的度数比为1:2,则较短的对角线长是 。 (4)已知:菱形的周长是52 cm ,一条对角线长是24 cm ,则它的面积是 。 二、解答题 已知:如图,在菱形ABCD 中,周长为8cm ,∠BAD=1200 对角线AC,BD 交于点 O,求这个菱形的对角线长和面积。 教学设计反思 本节课的主要教学内容为菱形的定义和性质。学生已经学习了平行四边形的性质,这是本节的知识基础。关于菱形的定义和性质,就是在平行四边形的基础上,进一步强化条件得到的。ABCDO 3 1.1 菱形的性质与判定(二) 教学目标: 1.探索并掌握菱形的判定方法,积累经验,并能综合运用,形成解决问题的能力; 2.经历菱形的判定方法的探索过程,在活动中发展合情推理意识和主动探究的习惯,初步掌握说理的基本方法,发展有条理表达的能力. 3.通过设置问题情境丰富学生的生活经验,激发学生学习数学和应用数学的兴趣和意识. 教学重点:菱形的判定方法. 教学难点:菱形的判定方法的综合运用. 教...