电脑桌面
添加小米粒文库到电脑桌面
安装后可以在桌面快捷访问

因式分解知识要点

因式分解知识要点_第1页
1/10
因式分解知识要点_第2页
2/10
因式分解知识要点_第3页
3/10
- 1 - 因式分解知识要点 因式分解在代数式的恒等变形、根式运算、分式通分与约分、一元二次方程以及三角函数的变形求解等方面均有着十分重要的应用,下面对因式分解中的有关知识要点进行归纳说明,供大家学习和参考。 1 、因式分解的定义 把一个多项式化成几个整式的积的形式,叫做把这个多项式因式分解(也可叫做把这个多项式分解因式)。本定义可从以下几方面进行理解: ⑴、因式分解是一种恒等变形,如22()()abab ab,无论字母 a 和 b 取何值,代数式22ab与 ()()ab ab的值总是相等的; ⑵、因式分解的结果必须是整式的积的形式,分解后的因式可以是单项式,也可以是多项式,但必须都是整式; ⑶、由于因式分解是整式乘法运算的逆运算,故因式分解是否正确,通常可以用整式乘法进行检验,看乘得的结果是否等于原多项式; ⑷、多项式的因式分解,必须进行到每个因式都不能再分解为止,但要注意是在何种数集内进行因式分解(如无特殊说明,教材一般只要求在有理数范围内进行分解)。 2 、因式分解的方法 ⑴、提公因式法:如果一个多项式的各项都含有公因式,则可利用分配律将此多项式的公因式提出来,从而将原多项式分解成两个因式的积的形式,像这种因式分解的方法,叫做提公因式法。如:()m am bm cm abc。 ⑵、运用公式法:利用等式的性质将乘法公式逆用从而实现多项式的因式分解,像这种因式分解的方法就称为公式法。公式法主要有以下两种: ①平方差公式:22()()abab ab; ②完全平方公式:2222()aabbab。 ⑶、分组分解法(教材中未给出但作业中有所涉及):将一个多项式中所含的各项分成若干组,然后再利用提公因式法或公式法等方法对多项式进行因式分解,像这种因式分解的方法就称- 2 - 为分组分解法。运用分组分解法的目的和作用主要有两个——①分组后能直接提公因式;②分组后能直接运用公式(平方差公式或完全平方公式)。 3 、因式分解的步骤 因式分解的一般步骤是:先看各项有没有公因式,若有公因式,则先提取公因式;若无公因式,则看能否运用公式法进行分解;最后,若以上方法均不能分解,则可尝试采用分组分解法。 因式分解也可按以下步骤进行考虑:先提公因式,若公因式提取后的多项式是二项式,则考虑用平方差公式;若是三项式,则考虑用完全平方公式或分组分解法;若是四项或四项以上的多项式,则应考虑用分组分解法。 因式分解的步骤还可用口决...

1、当您付费下载文档后,您只拥有了使用权限,并不意味着购买了版权,文档只能用于自身使用,不得用于其他商业用途(如 [转卖]进行直接盈利或[编辑后售卖]进行间接盈利)。
2、本站所有内容均由合作方或网友上传,本站不对文档的完整性、权威性及其观点立场正确性做任何保证或承诺!文档内容仅供研究参考,付费前请自行鉴别。
3、如文档内容存在违规,或者侵犯商业秘密、侵犯著作权等,请点击“违规举报”。

碎片内容

因式分解知识要点

确认删除?
VIP
微信客服
  • 扫码咨询
会员Q群
  • 会员专属群点击这里加入QQ群
客服邮箱
回到顶部